

Basic Profile Version 1.1
Working Group Draft

Date: 2003/12/06 07:48:25
This revision:

http://www.ws-i.org/Profiles/Basic/2003-12/BasicProfile-1.1.htm
Editors:

Keith Ballinger, Microsoft (1.0)
David Ehnebuske, IBM (1.0)
Martin Gudgin, Microsoft (1.0)
Mark Nottingham, BEA Systems
Prasad Yendluri, webMethods (1.0)

Administrative contact:
secretary@ws-i.org

Copyright © 2002-2003 by The Web Services-Interoperability
Organization (WS-I) and Certain of its Members. All Rights Reserved.

Abstract
This document defines the WS-I Basic Profile 1.1, consisting of a set of
non-proprietary Web services specifications, along with clarifications
and amendments to those specifications which promote interoperability.

Status of this Document
This document is a Working Group Draft; it has been accepted by the
Working Group as reflecting the current state of discussions. It is a work
in progress, and should not be considered authoritative or final; other
documents may supersede this document.

Feedback

The Web Services-Interoperability Organization (WS-I) would like to
receive input, suggestions and other feedback ("Feedback") on this
work from a wide variety of industry participants to improve its quality
over time.

By sending email, or otherwise communicating with WS-I, you (on
behalf of yourself if you are an individual, and your company if you are
providing Feedback on behalf of the company) will be deemed to have
granted to WS-I, the members of WS-I, and other parties that have
access to your Feedback, a non-exclusive, non-transferable, worldwide,
perpetual, irrevocable, royalty-free license to use, disclose, copy,
license, modify, sublicense or otherwise distribute and exploit in any
manner whatsoever the Feedback you provide regarding the work. You
acknowledge that you have no expectation of confidentiality with respect
to any Feedback you provide. You represent and warrant that you have
rights to provide this Feedback, and if you are providing Feedback on
behalf of a company, you represent and warrant that you have the rights
to provide Feedback on behalf of your company. You also acknowledge
that WS-I is not required to review, discuss, use, consider or in any way
incorporate your Feedback into future versions of its work. If WS-I does
incorporate some or all of your Feedback in a future version of the work,
it may, but is not obligated to include your name (or, if you are identified
as acting on behalf of your company, the name of your company) on a
list of contributors to the work. If the foregoing is not acceptable to you
and any company on whose behalf you are acting, please do not
provide any Feedback.

Feedback on this document should be directed to
wsbasic_comment@ws-i.org.

Table of Contents
1. Introduction
1.1. Relationships to Other Profiles
1.2. Notational Conventions
2. Profile Conformance
2.1. Conformance Requirements
2.2. Conformance Targets
2.3. Conformance Scope
2.4. Claiming Conformance
3. Messaging
3.1. SOAP Envelopes
3.1.1. SOAP Envelope Structure
3.1.2. SOAP Envelope Namespace

3.1.3. SOAP Body Namespace Qualification
3.1.4. Disallowed Constructs
3.1.5. SOAP Trailers
3.1.6. SOAP encodingStyle Attribute
3.1.7. SOAP mustUnderstand Attribute
3.1.8. xsi:type Attributes
3.2. SOAP Processing Model
3.2.1. Mandatory Headers
3.2.2. Generating mustUnderstand Faults
3.2.3. SOAP Fault Processing
3.3. SOAP Faults
3.3.1. SOAP Fault Structure
3.3.2. SOAP Fault Namespace Qualification
3.3.3. SOAP Fault Extensibility
3.3.4. SOAP Fault Language
3.3.5. SOAP Custom Fault Codes
3.3.6. Identifying SOAP Faults
3.4. Use of SOAP in HTTP
3.4.1. HTTP Protocol Binding
3.4.2. HTTP Methods and Extensions
3.4.3. SOAPAction Header Syntax
3.4.4. HTTP and TCP Ports
3.4.5. HTTP Success Status Codes
3.4.6. HTTP Redirect Status Codes
3.4.7. HTTP Client Error Status Codes
3.4.8. HTTP Server Error Status Codes
3.4.9. HTTP Cookies
4. Service Description
4.1. Required Description
4.2. Document Structure
4.2.1. WSDL Schema Definitions
4.2.2. WSDL and Schema Import
4.2.3. WSDL Import location Attribute Structure
4.2.4. WSDL Import location Attribute Semantics
4.2.5. Placement of WSDL import Elements
4.2.6. XML Version Requirements
4.2.7. WSDL and the Unicode BOM
4.2.8. Acceptable WSDL Character Encodings
4.2.9. Namespace Coercion
4.2.10. WSDL documentation Element
4.2.11. WSDL Extensions
4.3. Types
4.3.1. QName References
4.3.2. Schema targetNamespace Structure
4.3.3. soapenc:Array
4.3.4. WSDL and Schema Definition Target Namespaces

4.4. Messages
4.4.1. Bindings and Parts
4.4.2. Bindings and Faults
4.4.3. Unbound portType Element Contents
4.4.4. Declaration of part Elements
4.5. Port Types
4.5.1. Ordering of part Elements
4.5.2. Allowed Operations
4.5.3. Distinctive Operations
4.5.4. parameterOrder Attribute Construction
4.5.5. Exclusivity of type and element Attributes
4.6. Bindings
4.6.1. Use of SOAP Binding
4.7. SOAP Binding
4.7.1. Specifying the transport Attribute
4.7.2. HTTP Transport
4.7.3. Consistency of style Attribute
4.7.4. Encodings and the use Attribute
4.7.5. Default for use Attribute
4.7.6. Multiple Bindings for portType Elements
4.7.7. Wire Signatures for Operations
4.7.8. Multiple Ports on an Endpoint
4.7.9. Child Element for Document-Literal Bindings
4.7.10. One-Way Operations
4.7.11. Namespaces for soapbind Elements
4.7.12. Consistency of portType and binding Elements
4.7.13. Describing headerfault Elements
4.7.14. Enumeration of Faults
4.7.15. Type and Name of SOAP Binding Elements
4.7.16. name Attribute on Faults
4.7.17. Omission of the use Attribute
4.7.18. Consistency of Envelopes with Descriptions
4.7.19. Response Wrappers
4.7.20. Namespace for Part Accessors
4.7.21. Namespaces for Children of Part Accessors
4.7.22. Required Headers
4.7.23. Allowing Undescribed Headers
4.7.24. Ordering Headers
4.7.25. Describing SOAPAction
4.7.26. SOAP Binding Extensions
4.8. Use of XML Schema
5. Service Publication and Discovery
5.1. bindingTemplates
5.2. tModels
6. Security
6.1. Use of HTTPS

Appendix I: Referenced Specifications
Appendix II: Extensibility Points
Appendix III: Acknowledgements

1. Introduction
This document defines the WS-I Basic Profile 1.1 (hereafter, "Profile"),
consisting of a set of non-proprietary Web services specifications, along
with clarifications to and amplifications of those specifications which
promote interoperability.

Section 1 introduces the Profile, and explains its relationships to other
profiles.

Section 2, "Profile Conformance," explains what it means to be
conformant to the Profile.

Each subsequent section addresses a component of the Profile, and
consists of two parts; an overview detailing the component
specifications and their extensibility points, followed by subsections that
address individual parts of the component specifications. Note that there
is no relationship between the section numbers in this document and
those in the referenced specifications.

1.1 Relationships to Other Profiles

This Profile is derived from the Basic Profile 1.0, incorporating any
errata to date, and separating out those requirements related to the
serialization of envelopes and their representation in messages. Such
requirements are now part of the Simple SOAP Binding Profile 1.0,
identified with a separate conformance claim, so that a profile for
attachments could be composed with the Basic Profile 1.1.

This Profile is intended to supersede Basic Profile 1.0.

The manner in which this profile supersedes BP 1.0 is currently under
discussion.

A combined claim of conformance to both the Basic Profile 1.1 and the
Simple SOAP Binding Profile 1.0 should be equivalent to a claim of
conformance to the Basic Profile 1.0.

The Attachments Profile 1.0 adds support for SOAP with Attachments,
and is intended to be used in combination with this Profile.

1.2 Notational Conventions

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL
NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
RFC2119.

Normative statements in the Profile (i.e., those impacting conformance,
as outlined in "Profile Conformance") are presented in the following
manner:

RnnnnStatement text here.

where "nnnn" is replaced by the statement number. Each statement
contains exactly one requirement level keyword (e.g., "MUST") and one
conformance target keyword (e.g., "MESSAGE").

Some statements clarify the referenced specification(s), but do not
place additional constraints upon implementations. For convenience,
clarifications are annotated in the following manner: C

Some statements are derived from ongoing standardization work on the
referenced specification(s). For convenience, such forward-derived
statements are annotated in the following manner: xxxx, where "xxxx" is
an identifier for the specification (e.g., "SOAP12" for SOAP Version 1.2).
Note that because such work is not complete, the specification that the
requirement is derived from may change; this information is included
only as a convenience to implementers.

This specification uses a number of namespace prefixes throughout;
their associated URIs are listed below. Note that the choice of any
namespace prefix is arbitrary and not semantically significant.

• soap - "http://schemas.xmlsoap.org/soap/envelope/"
• xsi - "http://www.w3.org/2001/XMLSchema-instance"
• xsd - "http://www.w3.org/2001/XMLSchema"
• soapenc - "http://schemas.xmlsoap.org/soap/encoding/"
• wsdl - "http://schemas.xmlsoap.org/wsdl/"
• soapbind - "http://schemas.xmlsoap.org/wsdl/soap/"
• uddi - "urn:uddi-org:api_v2"

2. Profile Conformance
Conformance to the Profile is defined by adherence to the set of
requirements defined for a specific target, within the scope of the Profile.
This section explains these terms and describes how the Profile defines
conformance. See the Profile Conformance Framework for more
information about conformance to WS-I profiles.

2.1 Conformance Requirements

Requirements state the criteria for conformance to the Profile. They
typically refer to an existing specification and embody refinements,
interpretations and clarifications to it in order to improve interoperability.
All requirements in the Profile are considered normative, and those in
the specifications it references that are in-scope (see "Conformance
Scope") should likewise be considered normative. When requirements
in the Profile and its referenced specifications contradict each other, the
Profile's requirements take precedence for purposes of Profile
conformance.

Requirement levels, using RFC2119 language (e.g., MUST, MAY,
SHOULD) indicate the nature of the requirement and its impact on
conformance. Each requirement is individually identified (e.g., R9999)
for convenience.

For example;

R9999 WIDGETs SHOULD be round in shape.

This requirement is identified by "R9999", applies to the target WIDGET
(see below), and places a conditional requirement upon widgets; i.e.,
although this requirement must be met to maintain conformance in most
cases, there are some situations where there may be valid reasons for it
not being met (which are explained in the requirement itself, or in its
accompanying text).

Each requirement has exactly one conformance target and one
requirement level, to avoid ambiguity. Additional text may be included to
illuminate requirements or group of requirements (e.g., rationale and
examples); however, requirement statements alone should be
considered in determining conformance.

2.2 Conformance Targets

Conformance targets identify what artifacts (e.g., SOAP message,
WSDL description, UDDI registry data) or parties (e.g., SOAP processor,
end-user) requirements apply to. This allows for the definition of
conformance in different contexts, to assure unambiguous interpretation
of the applicability of requirements, and to allow conformance testing of
artifacts (e.g., SOAP messages and WSDL descriptions) and the
behavior of various parties to a Web service (e.g., clients and service
instances). Requirements' conformance targets are physical artifacts
wherever possible, to simplify testing and avoid ambiguity.

This Profile defines the following conformance targets:

• ENVELOPE - the serialization of the soap:Envelope element and
its content.

• MESSAGE - protocol elements that transport the ENVELOPE
(e.g., SOAP/HTTP messages).

• DESCRIPTION - descriptions of types, messages, interfaces and
their concrete protocol and data format bindings, and the network
access points associated with Web services (e.g., WSDL
descriptions).

• REGDATA - registry elements that are involved in the
registration and discovery of Web services (e.g. UDDI tModels).

• INSTANCE - software that implements a wsdl:port or a
uddi:bindingTemplate.

• CONSUMER - software that invokes an INSTANCE
• SENDER - software that generates a message according to the

protocol(s) associated with it
• RECEIVER - software that consumes a message according to

the protocol(s) associated with it (e.g., SOAP processors)

2.3 Conformance Scope

The scope of the Profile delineates the technologies that it addresses; in
other words, the Profile only attempts to improve interoperability within
its own scope. The Profile's scope is initially bounded by the
specifications referenced by it. The Profile's scope is further refined by
extensibility points.

Referenced specifications often provide extension mechanisms and
unspecified or open-ended configuration parameters. When identified by
the Profile as an extensibility point, such a mechanism or parameter is
outside the Profile's scope, and its use or non-use is not relevant to
conformance.

Because the use of extensibility points may impair interoperability, their
use should be negotiated or documented in some fashion by the parties
to a Web service; for example, this could take the form of an out-of-
band agreement. Note that the Profile may still place requirements on
the use of an extensibility point. Also, specific uses of extensibility points
may be further restricted by other profiles, to improve interoperability
when used in conjunction.

This Profile's scope is defined by the referenced specifications in
Appendix I, as refined by the extensibility points in Appendix II.

2.4 Claiming Conformance

Claims of conformance to the Profile can be made using the
mechanisms described in the Profile Conformance Framework.
Specifically, claims can be made using the following conformance
attachment mechanisms, as long as the requirements in this profile
associated with the listed targets have been met:

• WSDL 1.1 Claim Attachment Mechanism for Web Services
Instances - MESSAGE ENVELOPE DESCRIPTION REGDATA
INSTANCE CONSUMER SENDER RECEIVER

• WSDL 1.1 Claim Attachment Mechanism for Description
Constructs - DESCRIPTION

• UDDI Claim Attachment Mechanism for Web Service
Registrations - REGDATA

• UDDI Claim Attachment Mechanism for Web Service
Instances - MESSAGE ENVELOPE DESCRIPTION REGDATA
INSTANCE CONSUMER SENDER RECEIVER

The conformance claim URI for this Profile is "http://ws-
i.org/profiles/basic/1.1".

Generally, a deployed instance of a Web service (as specified by
wsdl:port or uddi:bindingTemplate) is considered conformant if it
produces only conformant artifacts, and is capable of consuming
conformant artifacts, as appropriate. Note that this means that where
multiple conformant artifacts are possible, a conformant service must be
able to consume them all (e.g., while a sender might choose whether to
encode XML in UTF-8 or UTF-16 when sending a message, a receiver
must be capable of using either).

Note that conformance does not apply to a service as a whole; only
ports are considered when determining conformance of instances.
Therefore, the Profile places no constraints on wsdl:service definitions.
In particular, they can contain multiple wsdl:port elements, each of
which may or may not be conformant.

Editors' note:There is still a need to turn the implied requirements
in this section into actual Requirements.

3. Messaging
This section of the Profile incorporates the following specifications by
reference, and defines extensibility points within them;

• Simple Object Access Protocol (SOAP) 1.1
Extensibility points:

o Header blocks - Header blocks are the fundamental
extensibility mechanism in SOAP.

o Processing order - The order of processing of a SOAP
message's components (e.g., headers) is unspecified, and
therefore may need to be negotiated out-of-band.

o Use of intermediaries - SOAP Intermediaries is an
underspecified mechanism in SOAP 1.1, and their use
may require out-of-band negotiation. Their use may also
necessitate careful consideration of where Profile
conformance is measured.

o soap:actor values - The value of the soap:actor attribute is
a private agreement between the parties to a Web service.

o Fault details - the contents of a Fault's detail element are
not prescribed by SOAP 1.1.

o Envelope serialization - The Profile does not constrain
some aspects of how the envelope is serialized into the
message.

• RFC2616: Hypertext Transfer Protocol -- HTTP/1.1
Extensibility points:

o HTTP Authentication - HTTP authentication allows for
extension schemes, arbitrary digest hash algorithms and
parameters.

o Unspecified Header Fields - HTTP allows arbitrary
headers to occur in messages.

o Expect-extensions - The Expect/Continue mechanism in
HTTP allows for expect-extensions.

o Content-Encoding - The set of content-codings allowed by
HTTP is open-ended.

o Transfer-Encoding - The set of transfer-encodings allowed
by HTTP is open-ended.

o Upgrade - HTTP allows a connection to change to an
arbitrary protocol using the Upgrade header.

• RFC2965: HTTP State Management Mechanism

3.1 SOAP Envelopes

The following specifications (or sections thereof) are referred to in this
section of the Profile;

• SOAP 1.1, Section 4

SOAP 1.1 defines a structure for transmitting messages, the envelope.
The Profile mandates the use of that structure, and places the following
constraints on its use:

3.1.1 SOAP Envelope Structure

R9980 An ENVELOPE MUST conform to the structure
specified in SOAP 1.1 Section 4, "SOAP
Envelope" (subject to amendment by the
Profile).

3.1.2 SOAP Envelope Namespace

SOAP 1.1 states that an envelope with a document element whose
namespace name is other than
"http://schemas.xmlsoap.org/soap/envelope/" should be discarded. The
Profile requires that a fault be generated instead, to assure
unambiguous operation.

R1015 A RECEIVER MUST generate a fault if they
encounter an envelope whose document
element is not soap:Envelope.

3.1.3 SOAP Body Namespace Qualification

The use of unqualified element names may cause naming conflicts,
therefore qualified names must be used for the children of soap:Body.

R1014 The children of the soap:Body element in an
ENVELOPE MUST be namespace qualified.

3.1.4 Disallowed Constructs

XML DTDs and PIs may introduce security vulnerabilities, processing
overhead and semantic ambiguity when used in envelopes. As a result,
these XML constructs are disallowed by section 3 of SOAP 1.1.

R1008 An ENVELOPE MUST NOT contain a Document
Type Declaration. C

R1009 An ENVELOPE MUST NOT contain Processing
Instructions. C

3.1.5 SOAP Trailers

The interpretation of sibling elements following the soap:Body element is
unclear. Therefore, such elements are disallowed.

R1011 An ENVELOPE MUST NOT have any element
children of soap:Envelope following the
soap:Body element.

This requirement clarifies a mismatch between the SOAP 1.1
specification and the SOAP 1.1 XML Schema.
For example,

INCORRECT:

<soap:Envelope
xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'
>
 <soap:Body>
 <p:Process xmlns:p='http://example.org/Operations'
/>
 </soap:Body>
 <m:Data xmlns:m='http://example.org/information' >
 Here is some data with the message
 </m:Data>
</soap:Envelope>

CORRECT:
<soap:Envelope
xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'
>
 <soap:Body>
 <p:Process xmlns:p='http://example.org/Operations'
>
 <m:Data
xmlns:m='http://example.org/information' >
 Here is some data with the message
 </m:Data>
 </p:Process>
 </soap:Body>
</soap:Envelope>

3.1.6 SOAP encodingStyle Attribute

The soap:encodingStyle attribute is used to indicate the use of a
particular scheme in the encoding of data into XML. However, this
introduces complexity, as this function can also be served by the use of
XML Namespaces. As a result, the Profile prefers the use of literal, non-
encoded XML.

R1005 An ENVELOPE MUST NOT contain
soap:encodingStyle attributes on any of the
elements whose namespace name is
"http://schemas.xmlsoap.org/soap/envelope/".

R1006 An ENVELOPE MUST NOT contain
soap:encodingStyle attributes on any element
that is a child of soap:Body.

R1007 An ENVELOPE described in an rpc-literal
binding MUST NOT contain
soap:encodingStyle attribute on any elements
are grandchildren of soap:Body.

3.1.7 SOAP mustUnderstand Attribute

The soap:mustUnderstand attribute has a restricted type of
"xsd:boolean" that takes only "0" or "1". Therefore, only those two
values are allowed.

R1013 An ENVELOPE containing a
soap:mustUnderstand attribute MUST only use
the lexical forms "0" and "1". C

3.1.8 xsi:type Attributes

In many cases, senders and receivers will share some form of type
information related to the envelopes being exchanged. The xsi:type
attribute is only needed where no such schema exists, that is where
both sides are assuming that all exchanged items are "xsd:anyType".

R1017 A RECEIVER MUST NOT mandate the use of
the xsi:type attribute in envelopes except as
required in order to indicate a derived type (see
XML Schema Part 1: Structures, Section 2.6.1).

3.2 SOAP Processing Model

The following specifications (or sections thereof) are referred to in this
section of the Profile;

• SOAP 1.1, Section 2

SOAP 1.1 defines a model for the processing of envelopes. In particular,
it defines rules for the processing of header blocks and the envelope
body. It also defines rules related to generation of faults. The Profile
places the following constraints on the processing model:

3.2.1 Mandatory Headers

SOAP 1.1's processing model is underspecified with respect to the
processing of mandatory header blocks. Mandatory header blocks are
those children of the soap:Header element bearing a
soap:mustUnderstand attribute with a value of "1".

R1025 A RECEIVER MUST handle envelopes in such a
way that it appears that all checking of
mandatory header blocks is performed before
any actual processing. SOAP12

This requirement guarantees that no undesirable side effects will occur
as a result of noticing a mandatory header block after processing other
parts of the message.

3.2.2 Generating mustUnderstand Faults

The Profile requires that receivers generate a fault when they encounter
header blocks that they do not understand targeted at them.

R1027 A RECEIVER MUST generate a
"soap:MustUnderstand" fault when an
envelope contains a mandatory header block
(i.e., one that has a soap:mustUnderstand
attribute with the value "1") targeted at the
receiver (via soap:actor) that the receiver does
not understand.

3.2.3 SOAP Fault Processing

When a fault is generated, no further processing should be performed.
In request-response exchanges, a fault message will be transmitted to
the sender of the request, and some application level error will be
flagged to the user.

R1028 When a fault is generated by a RECEIVER,
further processing SHOULD NOT be
performed on the SOAP envelope aside from
that which is necessary to rollback, or
compensate for, any effects of processing the
envelope prior to the generation of the fault.

R1029 Where the normal outcome of processing a
SOAP envelope would have resulted in the
transmission of a SOAP response, but rather a
fault is generated instead, a RECEIVER MUST
transmit a fault in place of the response.

R1030 A RECEIVER that generates a fault SHOULD
notify the end user that a fault has been
generated when practical, by whatever means
is deemed appropriate to the circumstance.

3.3 SOAP Faults

3.3.1 SOAP Fault Structure

A fault is an envelope that has a single child element of the soap:Body
element, that element being a soap:Fault element. The Profile restricts
the content of the soap:Fault element to those elements explicitly
described in SOAP 1.1.

R1000 When an ENVELOPE contains a soap:Fault
element, that element MUST NOT have
element children other than faultcode,
faultstring, faultactor and detail.

For example,
INCORRECT:

<soap:Fault
xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'
>
 <faultcode>soap:Client</faultcode>
 <faultstring>Invalid message format</faultstring>
 <faultactor>http://example.org/someactor</faultactor>
 <detail>There were lots of elements in the
message
 that I did not understand
 </detail>
 <m:Exception
xmlns:m='http://example.org/faults/exceptions' >
 <m:ExceptionType>Severe</m:ExceptionType>
 </m:Exception>
</soap:Fault>

CORRECT:
<soap:Fault
xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'
>
 <faultcode>soap:Client</faultcode>
 <faultstring>Invalid message format</faultstring>
 <faultactor>http://example.org/someactor</faultactor>
 <detail>
 <m:msg
xmlns:m='http://example.org/faults/exceptions'>
 There were lots of elements in the
message that I did not understand
 </m:msg>
 <m:Exception
xmlns:m='http://example.org/faults/exceptions'>
 <m:ExceptionType>Severe</m:ExceptionType>
 </m:Exception>
 </detail>
</soap:Fault>

3.3.2 SOAP Fault Namespace Qualification

The children of the soap:Fault element are local to that element,
therefore namespace qualification is unnecessary.

R1001 When an ENVELOPE contains a soap:Fault
element its element children MUST be
unqualified.

For example,
INCORRECT:
<soap:Fault
xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'
>
 <soap:faultcode>soap:Client</soap:faultcode>
 <soap:faultstring>Invalid message
format</soap:faultstring>

<soap:faultactor>http://example.org/someactor</soap:fau
ltactor>

 <soap:detail>
 <m:msg
xmlns:m='http://example.org/faults/exceptions'>
 There were lots of elements in the
message that
 I did not understand
 </m:msg>
 </soap:detail>
</soap:Fault>

CORRECT:
<soap:Fault
xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'
 xmlns='' >
 <faultcode>soap:Client</faultcode>
 <faultstring>Invalid message format</faultstring>
 <faultactor>http://example.org/someactor</faultactor>
 <detail>
 <m:msg
xmlns:m='http://example.org/faults/exceptions'>
 There were lots of elements in the
message that
 I did not understand
 </m:msg>
 </detail>
</soap:Fault>

3.3.3 SOAP Fault Extensibility

For extensibility, additional attributes are allowed to appear on the
detail element and additional elements are allowed to appear as
children of the detail element.

R1002 A RECEIVER MUST accept faults that have any
number of elements, including zero, appearing
as children of the detail element. Such
children can be qualified or unqualified.

R1003 A RECEIVER MUST accept faults that have any
number of qualified or unqualified attributes,
including zero, appearing on the detail
element. The namespace of qualified attributes
can be anything other than
"http://schemas.xmlsoap.org/soap/envelope/".

3.3.4 SOAP Fault Language

Faultstrings are human-readable indications of the n ature of a fault. As
such, they may not be in a particular language, and therefore the
xml:lang attribute can be used to indicate the language of the faultstring.

R1016 A RECEIVER MUST accept faults that carry an
xml:lang attribute on the faultstring element.

3.3.5 SOAP Custom Fault Codes

SOAP 1.1 allows custom fault codes to appear inside the faultcode
element, through the use of the "dot" notation.
Use of this mechanism to extend the meaning of the SOAP 1.1-defined
fault codes can lead to namespace collision. Therefore, its use should
be avoided, as doing so may cause interoperability issues when the
same names are used in the right-hand side of the "." (dot) to convey
different meaning.
Instead, the Profile encourages the use of the fault codes defined in
SOAP 1.1, along with additional information in the detail element to
convey the nature of the fault.
Alternatively, it is acceptable to define custom fault codes in a
namespace controlled by the specifying authority.
A number of specifications have already defined custom fault codes
using the "." (dot) notation. Despite this, their use in future specifications
is discouraged.

R1004 When an ENVELOPE contains a faultcode
element the content of that element SHOULD
be one of the fault codes defined in SOAP 1.1
or a namespace qualified fault code.

R1031 When an ENVELOPE contains a faultcode
element the content of that element SHOULD
NOT use of the SOAP 1.1 "dot" notation to
refine the meaning of the fault.

It is recommended that applications that require custom fault codes
either use the SOAP1.1 defined fault codes and supply additional
information in the detail element, or that they define these codes in a
namespace that is controlled by the specifying authority.
For example,

INCORRECT:
<soap:Fault
xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'
 xmlns:c='http://example.org/faultcodes' >
 <faultcode>soap:Server.ProcessingError</faultcode>
 <faultstring>An error occurred while processing the
message
 </faultstring>
</soap:Fault>

CORRECT:
<soap:Fault
xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'
 xmlns:c='http://example.org/faultcodes' >
 <faultcode>c:ProcessingError</faultcode>
 <faultstring>An error occured while processing the
message

 </faultstring>
</soap:Fault>

CORRECT:
<soap:Fault
xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'
>
 <faultcode>soap:Server</faultcode>
 <faultstring>An error occured while processing the
message
 </faultstring>
</soap:Fault>

3.3.6 Identifying SOAP Faults

Some consumer implementations use only the HTTP status code to
determine the presence of a fault. Because there are situations where
the Web infrastructure changes the HTTP status code, and for general
reliability, the Profile requires that they examine the envelope.

R1107 A RECEIVER MUST interpret an envelope
containing only a soap:Fault element as a fault.

3.4 Use of SOAP in HTTP

The following specifications (or sections thereof) are referred to in this
section of the Profile;

• SOAP 1.1, Section 6
• HTTP/1.1
• HTTP State Management Mechanism

SOAP 1.1 defines a single protocol binding, for HTTP. The Profile
mandates the use of that binding, and places the following constraints
on its use:

3.4.1 HTTP Protocol Binding

Several versions of HTTP are defined. HTTP/1.1 has performance
advantages, and is more clearly specified than HTTP/1.0.

R1141 A MESSAGE MUST be sent using either
HTTP/1.1 or HTTP/1.0.

R1140 A MESSAGE SHOULD be sent using HTTP/1.1.
Note that support for HTTP/1.0 is implied in HTTP/1.1, and that
intermediaries may change the version of a message; for more
information about HTTP versioning, see RFC2145, "Use and
Interpretation of HTTP Version Numbers."

3.4.2 HTTP Methods and Extensions

The SOAP1.1 specification defined its HTTP binding such that two
possible methods could be used, the HTTP POST method and the
HTTP Extension Framework's M-POST method. The Profile requires
that only the HTTP POST method be used and precludes use of the
HTTP Extension Framework.

R1132 A HTTP request MESSAGE MUST use the
HTTP POST method.

R1108 A MESSAGE MUST NOT use the HTTP
Extension Framework (RFC2774).

The HTTP Extension Framework is an experimental mechanism for
extending HTTP in a modular fashion. Because it is not deployed widely
and also because its benefits to the use of SOAP are questionable, the
Profile does not allow its use.

3.4.3 SOAPAction Header Syntax

Testing has demonstrated that requiring the SOAPAction HTTP header
field-value to be quoted increases interoperability of implementations.
Even though HTTP allows unquoted header field-values, some SOAP
implementations require that they be quoted.
SOAPAction is purely a hint to processors. All vital information regarding
the intent of a message is carried in soap:Envelope.

R1109 The value of the SOAPAction HTTP header field
in a HTTP request MESSAGE MUST be a
quoted string. C

R1119 A RECEIVER MAY respond with a fault if the
value of the SOAPAction HTTP header field in a
message is not quoted. C

For example,
CORRECT:

A WSDL Description that has:

<soapbind:operation soapAction="foo" />

results in a message with a SOAPAction HTTP header field of:

SOAPAction: "foo"

CORRECT:

A WSDL Description that has:

<soapbind:operation />

or

<soapbind:operation soapAction="" />

results in a message with a corresponding SOAPAction HTTP
header field as follows:

SOAPAction: ""

3.4.4 HTTP and TCP Ports

SOAP is designed to take advantage of the HTTP infrastructure.
However, there are some situations (e.g., involving proxies, firewalls
and other intermediaries) where there may be harmful side effects. As a
result, instances may find it advisable to use ports other than the default
for HTTP (port 80).

R1110 An INSTANCE MAY accept connections on TCP
port 80 (HTTP). C

There has been considerable debate within the W3C and IETF
regarding the propriety of the use of port 80 for SOAP messages bound
to HTTP. It has been concluded that this is an acceptable practice.

3.4.5 HTTP Success Status Codes

HTTP uses the 2xx series of status codes to communicate success. In
particular, 200 is the default for successful messages, but 202 can be
used to indicate that a message has been submitted for processing.
Additionally, other 2xx status codes may be appropriate, depending on
the nature of the HTTP interaction.

R1124 An INSTANCE MUST use a 2xx HTTP status
code on a response message that indicates the
successful outcome of a HTTP request.

R1111 An INSTANCE SHOULD use a "200 OK" HTTP
status code on a response message that
contains an envelope that is not a fault.

R1112 An INSTANCE SHOULD use either a "200 OK"
or "202 Accepted" HTTP status code for a
response message that does not contain a
SOAP envelope but indicates the successful
outcome of a HTTP request.

3.4.6 HTTP Redirect Status Codes

There are interoperability problems with using many of the HTTP
redirect status codes, generally surrounding whether to use the original
method, or GET. The Profile mandates "307 Temporary Redirect",
which has the semantic of redirection with the same HTTP method, as
the correct status code for redirection. For more information, see the
3xx status code descriptions in RFC2616.

R1130 An INSTANCE MUST use the "307 Temporary
Redirect" HTTP status code when redirecting a
request to a different endpoint.

R1131 A CONSUMER MAY automatically redirect a
request when it encounters a "307 Temporary
Redirect" HTTP status code in a response.

RFC2616 notes that user-agents should not automatically redirect
requests; however, this requirement was aimed at browsers, not
automated processes (which many Web services will be). Therefore, the
Profile allows, but does not require, consumers to automatically follow
redirections.

3.4.7 HTTP Client Error Status Codes

HTTP uses the 4xx series of status codes to indicate failure due to a
client error. Although there are a number of situations that may result in
one of these codes, the Profile highlights those when the payload of the
HTTP request is not the proper media type (i.e., "text/xml", as required
by the SOAP/HTTP binding), and when the anticipated method ("POST")
is not used.

R1125 An INSTANCE MUST use a 4xx HTTP status
code for a response that indicates a problem
with the format of a request.

R1114 An INSTANCE SHOULD use a "405 Method not
Allowed" HTTP status code if a HTTP request
message's method is not "POST".

Note that these requirements do not force an instance to respond to
requests. In some cases, such as Denial of Service attacks, an instance
may choose to ignore requests.

3.4.8 HTTP Server Error Status Codes

HTTP uses the 5xx series of status codes to indicate failure due to a
server error.

R1126 An INSTANCE MUST return a "500 Internal
Server Error" HTTP status code if the response
envelope is a fault.

3.4.9 HTTP Cookies

The HTTP State Management Mechanism ("Cookies") allows the
creation of stateful sessions between Web browsers and servers. Being
designed for hypertext browsing, Cookies do not have well-defined
semantics for Web services, and, because they are external to the
envelope, are not accommodated by either SOAP 1.1 or WSDL 1.1.
However, there are situations where it may be necessary to use
Cookies; e.g., for load balancing between servers, or for integration with
legacy systems that use Cookies. For these reasons, the Profile limits
the ways in which Cookies can be used, without completely disallowing
them.

R1120 An INSTANCE MAY use the HTTP state
mechanism ("Cookies").

R1122 An INSTANCE using Cookies SHOULD conform
to RFC2965.

R1121 An INSTANCE SHOULD NOT require consumer
support for Cookies in order to function
correctly.

R1123 The value of the cookie MUST be considered to
be opaque by the CONSUMER.

The Profile recommends that cookies not be required by instances for
proper operation; they should be a hint, to be used for optimization,
without materially affecting the execution of the Web service. However,
they may be required in legacy integration and other exceptional use
cases, so requiring them does not make an instance non-conformant.
While Cookies thus may have meaning to the instance, they should not
be used as an out-of-bound data channel between the instance and the
consumer. Therefore, interpretation of Cookies is not allowed at all by
the consumer - it is required to treat them as opaque (i.e., have no
meaning to the consumer).

4. Service Description
The Profile uses Web Services Description Language (WSDL) to enable
the description of services as sets of endpoints operating on messages.

This section of the Profile incorporates the following specifications by
reference, and defines extensibility points within them;

• Extensible Markup Language (XML) 1.0 (Second Edition)
• Web Services Description Language (WSDL) 1.1

Extensibility points:

o WSDL extensions - WSDL allows extension elements in
certain places; use of such extensions requires out-of-
band negotiation.

o Relative URIs - WSDL does not adequately specify the
use of relative URIs; their use may require further
coordination; see XML Base for more information.

o Validation mode - whether the parser used to read WSDL
and XML Schema documents performs DTD validation or
not.

o Fetching of external resources - whether the parser used
to read WSDL and XML Schema documents fetches
external entities and DTDs.

• XML Schema Part 1: Structures
Extensibility points:

o Schema annotations - XML Schema allows for annotations,
which may be used to convey additional information about
data structures.

• XML Schema Part 2: Datatypes

4.1 Required Description

An instance of a Web service is required to make the contract that it
operates under available in some fashion.

R0001 An INSTANCE MUST be described by a WSDL
1.1 service description, by a UDDI binding
template, or both.

"described," in this context, means that if an authorized consumer
requests a service description of a conformant service instance, then
the service instance provider must make the WSDL document, the
UDDI binding template, or both available to that consumer. A service
instance may provide run-time access to WSDL documents from a
server, but is not required to do so in order to be considered conformant.
Similarly, a service instance provider may register the instance provider
in a UDDI registry, but is not required to do so to be considered
conformant. In all of these scenarios, the WSDL contract must exist, but
might be made available through a variety of mechanisms, depending
on the circumstances.

4.2 Document Structure

The following specifications (or sections thereof) are referred to in this
section of the Profile;

• WSDL 1.1, Section 2.1

WSDL 1.1 defines an XML-based structure for describing Web services.
The Profile mandates the use of that structure, and places the following
constraints on its use:

4.2.1 WSDL Schema Definitions

The normative schemas for WSDL appearing in Appendix 4 of the
WSDL 1.1 specification have inconsistencies with the normative text of
the specification. The Profile references new schema documents that
have incorporated fixes for known errors.

R2028 A DESCRIPTION using the WSDL namespace
(prefixed "wsdl" in this Profile) MUST be valid
according to the XML Schema found at
"http://schemas.xmlsoap.org/wsdl/2003-02-
11.xsd".

R2029 A DESCRIPTION using the WSDL SOAP
binding namespace (prefixed "soapbind" in this
Profile) MUST be valid according to the XML
Schema found at
"http://schemas.xmlsoap.org/wsdl/soap/2003-
02-11.xsd".

Although the Profile requires WSDL descriptions to be Schema valid, it
does not require consumers to validate WSDL documents. It is the
responsibility of a WSDL document's author to assure that it is Schema
valid.

4.2.2 WSDL and Schema Import

Some examples in WSDL 1.1 incorrectly show the WSDL import
statement being used to import XML Schema definitions. The Profile
clarifies use of the import mechanisms to keep them consistent and
confined to their respective domains. Imported schema documents are
also constrained by XML version and encoding requirements consistent
to those of the importing WSDL documents.

R2001 A DESCRIPTION MUST only use the WSDL
"import" statement to import another WSDL
description.

R2002 To import XML Schema Definitions, a
DESCRIPTION MUST use the XML Schema
"import" statement.

R2003 A DESCRIPTION MUST use the XML Schema
"import" statement only within the xsd:schema
element of the types section.

R2004 A DESCRIPTION MUST NOT use the XML
Schema "import" statement to import a
Schema from any document whose root
element is not "schema" from the namespace
"http://www.w3.org/2001/XMLSchema".

R2009 An XML Schema directly or indirectly imported
by a DESCRIPTION MAY include the Unicode
Byte Order Mark (BOM).

R2010 An XML Schema directly or indirectly imported
by a DESCRIPTION MUST use either UTF-8
or UTF-16 encoding.

R2011 An XML Schema directly or indirectly imported
by a DESCRIPTION MUST use version 1.0 of
the eXtensible Markup Language W3C
Recommendation.

For example,
INCORRECT:
<definitions name="StockQuote"

targetNamespace="http://example.com/stockquote/definiti
ons"
 xmlns:xsd1="http://example.com/stockquote/schemas""
 ...
 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <import
namespace="http://example.com/stockquote/schemas"

location="http://example.com/stockquote/stockquote.xsd"
/>

 <message name="GetLastTradePriceInput">
 <part name="body"
element="xsd1:TradePriceRequest"/>
 </message>
 ...
</definitions>

CORRECT:
<definitions name="StockQuote"

targetNamespace="http://example.com/stockquote/definiti
ons">
 <import
namespace="http://example.com/stockquote/definitions"

location="http://example.com/stockquote/stockquote.wsdl
"/>
 <message name="GetLastTradePriceInput">
 <part name="body" element="..."/>
 </message>

 ...
 </definitions>

CORRECT:
<definitions name="StockQuote"
 targetNamespace="http://example.com/stockquote/"
 xmlns:xsd1="http://example.com/stockquote/schemas"
 ...
 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <import
namespace="http://example.com/stockquote/definitions"

location="http://example.com/stockquote/stockquote.wsdl
"/>

 <message name="GetLastTradePriceInput">
 <part name="body"
element="xsd1:TradePriceRequest"/>
 </message>
 ...
</definitions>

4.2.3 WSDL Import location Attribute Structure

WSDL 1.1 is not clear about whether the location attribute of the
wsdl:import statement is required, or what its content is required to be.

R2007 A DESCRIPTION MUST specify a non-empty
location attribute on the wsdl:import element.

Although the wsdl:import statement is modeled after the xsd:import
statement, the location attribute is required by wsdl:import while the
corresponding attribute on xsd:import, schemaLocation is optional.
Consistent with location being required, its content is not intended to
be empty.

4.2.4 WSDL Import location Attribute Semantics

WSDL 1.1 is unclear about whether WSDL processors must actually
retrieve and process the WSDL document from the URI specified in the
location attribute on the wsdl:import statements it encounters.

R2008 In a DESCRIPTION the value of the location
attribute of a wsdl:import element SHOULD
be treated as a hint. C

This means that WSDL processor may, but need not, retrieve a WSDL
description from the URI specified in the location attribute on a
wsdl:import element because a WSDL processor may have other ways
of locating a WSDL description for a given namespace. For example, it
may already have a cached or built-in representation, or it may retrieve
a representation from a metadata repository or UDDI server.

4.2.5 Placement of WSDL import Elements

Example 3 in WSDL 1.1 Section 3.1 causes confusion regarding the
placement of wsdl:import.

R2022 When they appear in a DESCRIPTION,
wsdl:import elements MUST precede all other
elements from the WSDL namespace except
wsdl:documentation.

R2023 When they appear in a DESCRIPTION,
wsdl:types elements MUST precede all other
elements from the WSDL namespace except
wsdl:documentation and wsdl:import.

For example,
INCORRECT:
<definitions name="StockQuote"
 ...
 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <import
namespace="http://example.com/stockquote/definitions"

location="http://example.com/stockquote/stockquote.wsdl
"/>

 <message name="GetLastTradePriceInput">
 <part name="body" type="tns:TradePriceRequest"/>
 </message>
 ...
 <service name="StockQuoteService">
 <port name="StockQuotePort"
binding="tns:StockQuoteSoap">

 </port>
 </service>

 <types>
 <schema
targetNamespace="http://example.com/stockquote/schemas"

xmlns="http://www.w3.org/2001/XMLSchema">

 </schema>
 </types>
</definitions>

CORRECT:
 <definitions name="StockQuote"

targetNamespace="http://example.com/stockquote/definiti
ons">

 <import
namespace="http://example.com/stockquote/base"

location="http://example.com/stockquote/stockquote.wsdl
"/>

 <message name="GetLastTradePriceInput">
 <part name="body" element="..."/>
 </message>
 ...
 </definitions>

CORRECT:
<definitions name="StockQuote"
 ...
 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <types>
 <schema
targetNamespace="http://example.com/stockquote/schemas"
 xmlns="http://www.w3.org/2001/XMLSchema">

 </schema>
 </types>

 <message name="GetLastTradePriceInput">
 <part name="body"
element="tns:TradePriceRequest"/>
 </message>
 ...
 <service name="StockQuoteService">
 <port name="StockQuotePort"
binding="tns:StockQuoteSoap">

 </port>
 </service>
</definitions>

4.2.6 XML Version Requirements

Neither WSDL 1.1 nor XML Schema 1.0 mandate a particular version of
XML. For interoperability, WSDL documents and the schemas they
import expressed in XML must use version 1.0.

R4004 A DESCRIPTION MUST use version 1.0 of the
eXtensible Markup Language W3C
Recommendation.

4.2.7 WSDL and the Unicode BOM

XML 1.0 allows documents that use the UTF-8 character encoding to
include a BOM; therefore, description processors must be prepared to
accept them.

R4002 A DESCRIPTION MAY include the Unicode Byte
Order Mark (BOM).C

4.2.8 Acceptable WSDL Character Encodings

The Profile consistently requires either UTF-8 or UTF-16 encoding for
both SOAP and WSDL (see also R1012).

R4003 A DESCRIPTION MUST use either UTF-8 or
UTF-16 encoding.

4.2.9 Namespace Coercion

Namespace coercion on wsdl:import is disallowed by the Profile.

R2005 The targetNamespace attribute on the
wsdl:definitions element of a description that
is being imported MUST have same the value
as the namespace attribute on the wsdl:import
element in the importing DESCRIPTION.

4.2.10 WSDL documentation Element

The WSDL 1.1 schema and the WSDL 1.1 specification are inconsistent
with respect to where wsdl:documentation elements may be placed.

R2020 The wsdl:documentation element MAY occur as
a child of the wsdl:import element in a
DESCRIPTION. WSDL12

R2021 The wsdl:documentation element MAY occur as
a child of the wsdl:part element in a
DESCRIPTION. WSDL12

R2024 The wsdl:documentation element MAY occur as
a first child of the wsdl:definitions element in
a DESCRIPTION. WSDL12

4.2.11 WSDL Extensions

Requiring support for WSDL extensions that are not explicitly specified
by this or another WS-I Profile can lead to interoperability problems with
development tools that have not been instrumented to understand those
extensions.

R2025 A DESCRIPTION containing WSDL extensions
MUST NOT use them to contradict other
requirements of the Profile.

R2026 A DESCRIPTION SHOULD NOT include
extension elements with a wsdl:required
attribute value of "true" on any WSDL construct
(wsdl:binding, wsdl:portType, wsdl:message,
wsdl:types or wsdl:import) that claims
conformance to the Profile.

R2027 If during the processing of an element in the
WSDL namespace in a description, a
consumer encounters a WSDL extension
element amongst its element children, that has
a wsdl:required attribute with a boolean value
of "true" that the consumer does not
understand or cannot process, the
CONSUMER MUST fail processing of that
element in the WSDL namespace.

Development tools that consume a WSDL description and generate
software for a Web service instance might not have built-in
understanding of an unknown WSDL extension. Hence, use of required
WSDL extensions should be avoided. Use of a required WSDL
extension that does not have an available specification for its use and
semantics imposes potentially insurmountable interoperability concerns
for all but the author of the extension. Use of a required WSDL
extension that has an available specification for its use and semantics
reduces, but does not eliminate the interoperability concerns that lead to
this refinement.
The following elements are extensible via attributes only:

• wsdl:import
• wsdl:part
• wsdl:portType
• wsdl:input (in portType operation)
• wsdl:output (in portType operation)
• wsdl:fault (in portType operation)

The following elements are extensible via elements as well as attributes:

• wsdl:definitions
• wsdl:types
• wsdl:message
• wsdl:operation
• wsdl:binding
• wsdl:input (in binding operation)
• wsdl:output (in binding operation)
• wsdl:fault (in binding operation)
• wsdl:service
• wsdl:port

4.3 Types

The following specifications (or sections thereof) are referred to in this
section of the Profile;

• WSDL 1.1, Section 2.2

The wsdl:types element of WSDL 1.1 encloses data type definitions
that are relevant to the Web service described. The Profile places the
following constraints pertinent to those portions of the content of the
wsdl:types element that are referred to by WSDL elements that make
Profile conformance claims:

4.3.1 QName References

XML Schema requires each QName reference to use either the target
namespace, or an imported namespace (one marked explicitly with an
xsd:import element). QName references to namespaces represented
only by nested imports are not allowed.
WSDL 1.1 is unclear as to which schema target namespaces are
suitable for QName references from a WSDL element. The Profile
allows QName references from WSDL elements both to the target
namespace defined by the xsd:schema element, and to imported
namespaces. Similar to XML Schema, namespaces not referenced
directly within the WSDL file (through the targetNamespace attribute on
xsd:schema, or through the namespace attribute on xsd:import) are
available for use in QName reference. QName references to
namespaces that are only defined through a nested import are not
allowed.

R2101 A DESCRIPTION MUST NOT use QName
references to elements in namespaces that
have been neither imported, nor defined in the
referring WSDL document.

R2102 A QName reference to a Schema component in
a DESCRIPTION MUST use the namespace
defined in the targetNamespace attribute on the
xsd:schema element, or to a namespace
defined in the namespace attribute on an
xsd:import element within the xsd:schema
element.

4.3.2 Schema targetNamespace Structure

Requiring a targetNamespace on all xsd:schema elements that are
children of wsdl:types is a good practice, places a minimal burden on
authors of WSDL documents, and avoids the cases that are not as
clearly defined as they might be.

R2105 All xsd:schema elements contained in a
wsdl:types element of a DESCRIPTION
MUST have a targetNamespace attribute with a

valid and non-null value, UNLESS the
xsd:schema element has xsd:import and/or
xsd:annotation as its only child element(s).

4.3.3 soapenc:Array

The recommendations in WSDL 1.1 Section 2.2 for declaration of array
types have been interpreted in various ways, leading to interoperability
problems. Further, there are other clearer ways to declare arrays.

R2110 In a DESCRIPTION, array declarations MUST
NOT extend or restrict the soapenc:Array type.

R2111 In a DESCRIPTION, array declarations MUST
NOT use wsdl:arrayType attribute in the type
declaration.

R2112 In a DESCRIPTION, array declaration wrapper
elements SHOULD NOT be named using the
convention ArrayOfXXX.

R2113 An ENVELOPE containing serialized arrays
MUST NOT include the soapenc:arrayType
attribute.

For example,
INCORRECT:

Given the WSDL Description:

<xsd:element name="MyArray2" type="tns:MyArray2Type"/>
<xsd:complexType name="MyArray2Type"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding
/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" >
 <xsd:complexContent>
 <xsd:restriction base="soapenc:Array">
 <xsd:sequence>
 <xsd:element name="x" type="xsd:string"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute ref="soapenc:arrayType"
 wsdl:arrayType="tns:MyArray2Type[]"/>
 </xsd:restriction>
 </xsd:complexContent>
</xsd:complexType>

The envelope would serialize as (omitting namespace
declarations for clarity):

<MyArray2 soapenc:arrayType="tns:MyArray2Type[]" >
 <x>abcd</x>

 <x>efgh</x>
</MyArray2>

CORRECT:

Given the WSDL Description:

<xsd:element name="MyArray1" type="tns:MyArray1Type"/>
<xsd:complexType name="MyArray1Type">
 <xsd:sequence>
 <xsd:element name="x" type="xsd:string"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

The envelope would serialize as (omitting namespace
declarations for clarity):

<MyArray1>
 <x>abcd</x>
 <x>efgh</x>
</MyArray1>

4.3.4 WSDL and Schema Definition Target Namespaces

The names defined by schemas and the names assigned to WSDL
definitions are in separate symbol spaces.

R2114 The target namespace for WSDL definitions and
the target namespace for schema definitions in
a DESCRIPTION MAY be the same.WSDL12

4.4 Messages

The following specifications (or sections thereof) are referred to in this
section of the Profile;

• WSDL 1.1, Section 2.3

In WSDL 1.1, wsdl:message elements are used to represent abstract
definitions of the data being transmitted. It uses wsdl:binding elements
to define how the abstract definitions are bound to a specific wire format.
The Profile places the following constraints on wsdl:message elements
and on how conformant wsdl:binding elements may use wsdl:message
element(s).

In this section the following definitions are used to make the
requirements more compact and easier to understand.

An "rpc-literal binding" is a wsdl:binding element whose child
wsdl:operation elements are all rpc-literal operations.

An "rpc-literal operation" is a wsdl:operation child element of
wsdl:binding each of whose soapbind:body descendant elements
specifies the use attribute with the value "literal" and each of which
either:

1. Specifies the style attribute with the value "rpc"; or
2. Is the child of a soapbind:binding element which specifies the

style attribute with the value "rpc", and does not itself have the
style attribute specified.

A "document-literal binding" is a wsdl:binding element whose child
wsdl:operation elements are all document-literal operations.

A "document-literal operation" is a wsdl:operation child element of
wsdl:binding each of whose soapbind:body descendent elements
specifies the use attribute with the value "literal" and each of which
either:

1. Specifies the style attribute with the value "document"; or
2. Is the child of a soapbind:binding element which specifies the

style attribute with the value "document", and does not itself
have the style attribute specified; or

3. Is the child of a soapbind:binding element which does not have
the style attribute specified, and does not itself have the style
attribute specified.

4.4.1 Bindings and Parts

There are various interpretations about how many wsdl:part elements
are permitted or required for document-literal and rpc-literal bindings
and how they must be defined.

R2201 A document-literal binding in a DESCRIPTION
MUST, in each of its soapbind:body element(s),
have at most one part listed in the parts
attribute, if the parts attribute is specified.

R2210 If a document-literal binding in a DESCRIPTION
does not specify the parts attribute on a
soapbind:body element, the corresponding
abstract wsdl:message MUST define zero or
one wsdl:parts.

R2202 A wsdl:binding in a DESCRIPTION MAY
contain soapbind:body element(s) that specify
that zero parts form the soap:Body.

R2203 An rpc-literal binding in a DESCRIPTION MUST
refer, in its soapbind:body element(s), only to
wsdl:part element(s) that have been defined
using the type attribute.

R2211 An ENVELOPE described with an rpc-literal
binding MUST NOT have the xsi:nil attribute
with a value of "1" or "true" on the part
accessors.

R2207 A wsdl:message in a DESCRIPTION MAY
contain wsdl:parts that use the elements
attribute provided those wsdl:parts are not
referred to by a soapbind:body in an rpc-literal
binding.

R2204 A document-literal binding in a DESCRIPTION
MUST refer, in each of its soapbind:body
element(s), only to wsdl:part element(s) that
have been defined using the element attribute.

R2208 A binding in a DESCRIPTION MAY contain
soapbind:header element(s) that refer to
wsdl:parts in the same wsdl:message that are
referred to by its soapbind:body element(s).

Use of wsdl:message elements with zero parts is permitted in Document
styles to permit operations that can send or receive envelopes with
empty soap:Bodys. Use of wsdl:message elements with zero parts is
permitted in RPC styles to permit operations that have no (zero)
parameters and/or a return value.
For document-literal bindings, the Profile requires that at most one part,
abstractly defined with the element attribute, be serialized into the
soap:Body element.
When a wsdl:part element is defined using the type attribute, the wire
representation of that part is equivalent to an implicit (XML Schema)
qualification of a minOccurs attribute with the value "1", a maxOccurs
attribute with the value "1" and a nillable attribute with the value "false".

4.4.2 Bindings and Faults

There are several interpretations for how wsdl:part elements that
describe soapbind:fault, soapbind:header, and soapbind:headerfault
may be defined.

R2205 A wsdl:binding in a DESCRIPTION MUST refer,
in each of its soapbind:header,
soapbind:headerfault and soapbind:fault
elements, only to wsdl:part element(s) that
have been defined using the element attribute.

Because faults and headers do not contain parameters, soapbind:fault,
soapbind:header and soapbind:headerfault assume, per WSDL 1.1,
that the value of the style attribute is "document". R2204 requires that
all wsdl:part elements with a style attribute whose value is "document"
that are bound to soapbind:body be defined using the element attribute.
This requirement does the same for soapbind:fault, soapbind:header
and soapbind:headerfault elements.

4.4.3 Unbound portType Element Contents

WSDL 1.1 is not explicit about whether it is permissible for a
wsdl:binding to leave the binding for portions of the content defined by
a wsdl:portType unspecified.

R2209 A wsdl:binding in a DESCRIPTION SHOULD
bind every wsdl:part of a wsdl:message in the
wsdl:portType to which it refers to one of
soapbind:body, soapbind:header,
soapbind:fault or soapbind:headerfault.

A portType defines an abstract contract with a named set of operations
and associated abstract messages. Although not disallowed, it is
expected that every part of the abstract input, output and fault
messages specified in a portType is bound to soapbind:body or
soapbind:header (and so forth) as appropriate when using the SOAP
binding as defined in WSDL 1.1 Section 3.

4.4.4 Declaration of part Elements

Examples 4 and 5 in WSDL 1.1 Section 3.1 incorrectly show the use of
XML Schema types (e.g. "xsd:string") as a valid value for the element
attribute of a wsdl:part element.

R2206 A wsdl:message in a DESCRIPTION containing a
wsdl:part that uses the element attribute
MUST refer, in that attribute, to a global
element declaration.

For example,
INCORRECT:
 <message name="GetTradePriceInput">
 <part name="tickerSymbol" element="xsd:string"/>
 <part name="time" element="xsd:timeInstant"/>
 </message>

INCORRECT:
 <message name="GetTradePriceInput">
 <part name="tickerSymbol" element="xsd:string"/>
 </message>

CORRECT:
 <message name="GetTradePriceInput">
 <part name="body"
element="tns:SubscribeToQuotes"/>
 </message>

4.5 Port Types

The following specifications (or sections thereof) are referred to in this
section of the Profile;

• WSDL 1.1, Section 2.4

In WSDL 1.1, wsdl:portType elements are used to group a set of
abstract operations. The Profile places the following constraints on
conformant wsdl:portType element(s):

4.5.1 Ordering of part Elements

Permitting the use of parameterOrder helps code generators in mapping
between method signatures and messages on the wire.

R2301 The order of the elements in the soap:body of an
ENVELOPE MUST be the same as that of the
wsdl:parts in the wsdl:message that describes
it.

R2302 A DESCRIPTION MAY use the parameterOrder
attribute of an wsdl:operation element to
indicate the return value and method
signatures as a hint to code generators.

4.5.2 Allowed Operations

Solicit-Response and Notification operations are not well defined by
WSDL 1.1; furthermore, WSDL 1.1 does not define bindings for them.

R2303 A DESCRIPTION MUST NOT use Solicit-
Response and Notification type operations in a
wsdl:portType definition.

4.5.3 Distinctive Operations

Operation name overloading in a wsdl:portType is disallowed by the
Profile.

R2304 A wsdl:portType in a DESCRIPTION MUST
have operations with distinct values for their
name attributes.

Note that this requirement applies only to the wsdl:operations within a
given wsdl:portType. A wsdl:portType may have wsdl:operations with
names that are the same as those found in other wsdl:portTypes.

4.5.4 parameterOrder Attribute Construction

WSDL 1.1 does not clearly state how the parameterOrder attribute of
the wsdl:portType should be constructed.

R2305 A wsdl:portType in a DESCRIPTION MUST be
constructed so that the parameterOrder
attribute, if present, omits at most 1 wsdl:part
from the output message.

If a wsdl:part from the output message is omitted from the list of
wsdl:parts that is the value of the parameterOrder attribute, the single
omitted wsdl:part is the return value. There are no restrictions on the
type of the return value. If no part is omitted, there is no return value.

4.5.5 Exclusivity of type and element Attributes

WSDL 1.1 does not clearly state that both type and element attributes
cannot be specified to define a wsdl:part in a wsdl:message.

R2306 A wsdl:message in a DESCRIPTION MUST NOT
specify both type and element attributes on the
same wsdl:part.

4.6 Bindings

The following specifications (or sections thereof) are referred to in this
section of the Profile;

• WSDL 1.1, Section 2.5

In WSDL 1.1, the wsdl:binding element supplies the concrete protocol
and data format specifications for the operations and messages defined
by a particular wsdl:portType. The Profile places the following
constraints on conformant binding specifications:

4.6.1 Use of SOAP Binding

The Profile limits the choice of bindings to the well-defined and most
commonly used SOAP binding.

R2401 A wsdl:binding element in a DESCRIPTION
MUST use WSDL SOAP Binding as defined in
WSDL 1.1 Section 3.

Note that this places a requirement on the construction of conformant
wsdl:binding elements. It does not place a requirement on descriptions
as a whole; in particular, it does not preclude WSDL documents from
containing non-conformant wsdl:binding elements. Also, a binding may
have WSDL extensibility elements present which change how
messages are serialized.

4.7 SOAP Binding

The following specifications (or sections thereof) are referred to in this
section of the Profile;

• WSDL 1.1, Section 3.0

WSDL 1.1 defines a binding for SOAP 1.1 endpoints. The Profile
mandates the use of SOAP binding as defined in WSDL 1.1, and places
the following constraints on its use:

4.7.1 Specifying the transport Attribute

There is an inconsistency between the WSDL 1.1 specification and the
WSDL 1.1 schema regarding the transport attribute. The WSDL 1.1
specification requires it; however, the schema shows it to be optional.

R2701 The wsdl:binding element in a DESCRIPTION
MUST be constructed so that its
soapbind:binding child element specifies the
transport attribute.

4.7.2 HTTP Transport

The profile limits the underlying transport protocol to HTTP.

R2702 A wsdl:binding element in a DESCRIPTION
MUST specify the HTTP transport protocol with
SOAP binding. Specifically, the transport
attribute of its soapbind:binding child MUST
have the value
"http://schemas.xmlsoap.org/soap/http".

Note that this requirement does not prohibit the use of HTTPS; See
R5000.

4.7.3 Consistency of style Attribute

The style, "document" or "rpc", of an interaction is specified at the
wsdl:operation level, permitting wsdl:bindings whose
wsdl:operations have different styles. This has led to interoperability
problems.

R2705 A wsdl:binding in a DESCRIPTION MUST use
either be a rpc-literal binding or a document-
literal binding.

4.7.4 Encodings and the use Attribute

The Profile prohibits the use of encodings, including the SOAP encoding.

R2706 A wsdl:binding in a DESCRIPTION MUST use
the value of "literal" for the use attribute in all
soapbind:body, soapbind:fault,
soapbind:header and soapbind:headerfault
elements.

4.7.5 Default for use Attribute

There is an inconsistency between the WSDL 1.1 specification and the
WSDL 1.1 schema regarding whether the use attribute is optional on
soapbind:body, soapbind:header, and soapbind:headerfault, and if so,
what omitting the attribute means.

R2707 A wsdl:binding in a DESCRIPTION that
contains one or more soapbind:body,
soapbind:fault, soapbind:header or
soapbind:headerfault elements that do not
specify the use attribute MUST be interpreted
as though the value "literal" had been specified
in each case.

4.7.6 Multiple Bindings for portType Elements

The Profile explicitly permits multiple bindings for the same portType.

R2709 A wsdl:portType in a DESCRIPTION MAY have
zero or more wsdl:bindings that refer to it,
defined in the same or other WSDL documents.

4.7.7 Wire Signatures for Operations

An endpoint that supports multiple operations must unambiguously
identify the operation being invoked based on the input message that it
receives. This is only possible if all the operations specified in the
wsdl:binding associated with an endpoint have a unique wire signature.

R2710 The operations in a wsdl:binding in a
DESCRIPTION MUST result in wire signatures
that are different from one another.

The Profile defines the "wire signature" of an operation in a
wsdl:binding to be the fully qualified name of the child element of the
soap:Body of the SOAP input message it describes. For the case of an
empty soap:Body this name is an empty string.
In the case of rpc-literal binding, the operation name is used as a
wrapper for the part accessors. In the document-literal case, since a
wrapper with the operation name is not present, the message
signatures must be correctly designed so that they meet this
requirement.

4.7.8 Multiple Ports on an Endpoint

When input messages destined for two different wsdl:ports at the same
network endpoint are indistinguishable on the wire, it may not be
possible to determine the wsdl:port being invoked by them. This may
cause interoperability problems. However, there may be situations (e.g.,
SOAP versioning, application versioning, conformance to different
profiles) where it is desirable to locate more than one port on an
endpoint; therefore, the Profile allows this.

R2711 A DESCRIPTION SHOULD NOT have more
than one wsdl:port with the same value for the
location attribute of the soapbind:address
element.

4.7.9 Child Element for Document-Literal Bindings

WSDL 1.1 is not completely clear what, in document-literal style
bindings, the child element of soap:Body is.

R2712 A document-literal binding MUST be represented
as an ENVELOPE with a soap:Body whose
child element is an instance of the global
element declaration referenced by the
corresponding wsdl:message part.

4.7.10 One-Way Operations

There are differing interpretations of how HTTP is to be used when
performing one-way operations.

R2714 For one-way operations, an INSTANCE MUST
NOT return a HTTP response that contains an
envelope. Specifically, the HTTP response
entity-body must be empty.

R2750 A CONSUMER MUST ignore an envelope
carried in a HTTP response message in a one-
way operation.

R2727 For one-way operations, a CONSUMER MUST
NOT interpret a successful HTTP response
status code (i.e., 2xx) to mean the message is
valid or that the receiver would process it.

One-way operations do not produce SOAP responses. Therefore, the
Profile prohibits sending a SOAP envelope in response to a one-way
operation. This means that transmission of one-way operations can not
result in processing level responses or errors. For example, a "500
Internal Server Error" HTTP response that contains a fault can not be
returned in this situation.
The HTTP response to a one-way operation indicates the success or
failure of the transmission of the message. Based on the semantics of
the different response status codes supported by the HTTP protocol, the
Profile specifies that "200" and "202" are the preferred status codes that
the sender should expect, signifying that the one-way message was
received. A successful transmission does not indicate that the SOAP
processing layer and the application logic has had a chance to validate
the envelope or have committed to processing it.
Despite the fact that the HTTP 1.1 assigns different meanings to
response status codes "200" and "202", in the context of the Profile they
should be considered equivalent by the initiator of the request. The
Profile accepts both status codes because some SOAP
implementations have little control over the HTTP protocol
implementation and cannot control which of these response status
codes is sent.

4.7.11 Namespaces for soapbind Elements

There is confusion about what namespace is associated with the child
elements of various children of soap:Envelope, which has led to
interoperability difficulties. The Profile defines these.

R2716 A document-literal binding in a DESCRIPTION
MUST NOT have the namespace attribute
specified on contained soapbind:body,
soapbind:header, soapbind:headerfault and
soapbind:fault elements.

R2717 An rpc-literal binding in a DESCRIPTION MUST
have the namespace attribute specified, the
value of which MUST be an absolute URI, on
contained soapbind:body elements.

R2726 An rpc-literal binding in a DESCRIPTION MUST
NOT have the namespace attribute specified on
contained soapbind:header,
soapbind:headerfault and soapbind:fault
elements.

In a document-literal SOAP binding, the serialized element child of the
soap:Body gets its namespace from the targetNamespace of the
schema that defines the element. Use of the namespace attribute of the
soapbind:body element would override the element's namespace. This
is not allowed by the Profile.
Conversely, in a rpc-literal SOAP binding, the serialized child element of
the soap:Body element consists of a wrapper element, whose
namespace is the value of the namespace attribute of the soapbind:body
element and whose local name is either the name of the operation or
the name of the operation suffixed with "Response". The namespace
attribute is required, as opposed to being optional, to ensure that the
children of the soap:Body element are namespace-qualified.

4.7.12 Consistency of portType and binding Elements

The WSDL description must be consistent at both wsdl:portType and
wsdl:binding levels.

R2718 A wsdl:binding in a DESCRIPTION MUST have
the same set of wsdl:operations as the
wsdl:portType to which it refers. C

4.7.13 Describing headerfault Elements

There is inconsistency between WSDL specification text and the WSDL
schema regarding soapbind:headerfaults.

R2719 A wsdl:binding in a DESCRIPTION MAY
contain no soapbind:headerfault elements if
there are no known header faults.

The WSDL 1.1 schema makes the specification of
soapbind:headerfault element mandatory on wsdl:input and
wsdl:output elements of an operation, whereas the WSDL 1.1
specification marks them optional. The specification is correct.

4.7.14 Enumeration of Faults

A Web service description should include all faults known at the time the
service is defined. There is also need to permit generation of new faults
that had not been identified when the Web service was defined.

R2740 A wsdl:binding in a DESCRIPTION SHOULD
contain a soapbind:fault describing each
known fault.

R2741 A wsdl:binding in a DESCRIPTION SHOULD
contain a soapbind:headerfault describing
each known header fault.

R2742 An ENVELOPE MAY contain fault with a detail
element that is not described by a wsdl:fault
element in the corresponding WSDL
description.

R2743 An ENVELOPE MAY contain the details of a
header processing related fault in a SOAP
header block that is not described by a
wsdl:headerfault element in the
corresponding WSDL description.

4.7.15 Type and Name of SOAP Binding Elements

The WSDL 1.1 schema disagrees with the WSDL 1.1 specification
about the name and type of an attribute of the soapbind:header and
soapbind:headerfault elements.

R2720 A wsdl:binding in a DESCRIPTION MUST use
the part attribute with a schema type of
"NMTOKEN" on all contained soapbind:header
and soapbind:headerfault elements.

R2749 A wsdl:binding in a DESCRIPTION MUST NOT
use the parts attribute on contained
soapbind:header and soapbind:headerfault
elements.

The WSDL Schema gives the attribute's name as "parts" and its type as
"NMTOKENS". The schema is incorrect since each soapbind:header
and soapbind:headerfault element references a single wsdl:part.
For example,

CORRECT:
<binding name="StockQuoteSoap"
type="tns:StockQuotePortType">
 <soapbind:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="SubscribeToQuotes">
 <input message="tns:SubscribeToQuotes">
 <soapbind:body parts="body" use="literal"/>
 <soapbind:header
message="tns:SubscribeToQuotes"

 part="subscribeheader"
use="literal"/>
 </input>
 </operation>
</binding>

4.7.16 name Attribute on Faults

There is inconsistency between the WSDL 1.1 specification and the
WSDL 1.1 schema, which does not list the name attribute.

R2721 A wsdl:binding in a DESCRIPTION MUST have
the name attribute specified on all contained
soapbind:fault elements.

R2754 In a DESCRIPTION, the value of the name
attribute on a soapbind:fault element MUST
match the value of the name attribute on its
parent wsdl:fault element.

4.7.17 Omission of the use Attribute

There is inconsistency between the WSDL 1.1 specification and the
WSDL 1.1 schema regarding the use attribute.

R2722 A wsdl:binding in a DESCRIPTION MAY
specify the use attribute on contained
soapbind:fault elements. C

R2723 If in a wsdl:binding in a DESCRIPTION the use
attribute on a contained soapbind:fault
element is present, its value MUST be "literal".

R2728 A wsdl:binding in a DESCRIPTION that omits
the use attribute on a contained
soapbind:fault element MUST be interpreted
as though use="literal" had been specified. C

WSDL 1.1 Section 3.6 indicates that the use attribute of soapbind:fault
is required while in the schema the use attribute is defined as optional.
The Profile defines it as optional, to be consistent with soapbind:body.
Since the use attribute is optional, the Profile identifies the default value
for the attribute when omitted.
Finally, to assure that the Profile is self-consistent, the only permitted
value for the use attribute is "literal".

4.7.18 Consistency of Envelopes with Descriptions

These requirements specify that when an instance receives an
envelope that does not conform to the WSDL description, a fault should

be generated unless the instance takes it upon itself to process the
envelope regardless of this.
As specified by the SOAP processing model, (a) a "VersionMismatch"
faultcode must be generated if the namespace of the "Envelope"
element is incorrect, (b) a "MustUnderstand" fault must be generated if
the instance does not understand a SOAP header block with a value of
"1" for the soap:mustUnderstand attribute. In all other cases where an
envelope is inconsistent with its WSDL description, a fault with a "Client"
faultcode should be generated.

R2724 If an INSTANCE receives an envelope that is
inconsistent with its WSDL description, it
SHOULD generate a soap:Fault with a
faultcode of "Client", unless a
"MustUnderstand" or "VersionMismatch" fault
is generated.

R2725 If an INSTANCE receives an envelope that is
inconsistent with its WSDL description, it
MUST check for "VersionMismatch",
"MustUnderstand" and "Client" fault conditions
in that order.

4.7.19 Response Wrappers

WSDL 1.1 Section 3.5 could be interpreted to mean the RPC response
wrapper element must be named identical to the name of the
wsdl:operation.

R2729 An ENVELOPE described with an rpc-literal
binding that is a response MUST have a
wrapper element whose name is the
corresponding wsdl:operation name suffixed
with the string "Response".

4.7.20 Namespace for Part Accessors

For rpc-literal envelopes, WSDL 1.1 is not clear what namespace, if any,
the accessor elements for parameters and return value are a part of.
Different implementations make different choices, leading to
interoperability problems.

R2735 An ENVELOPE described with an rpc-literal
binding MUST place the part accessor
elements for parameters and return value in no
namespace.

Settling on one alternative is crucial to achieving interoperability. The
Profile places the part accessor elements in no namespace as doing so
is simple, covers all cases, and does not lead to logical inconsistency.

4.7.21 Namespaces for Children of Part Accessors

For rpc-literal envelopes, WSDL 1.1 is not clear on what the correct
namespace qualification is for the child elements of the part accessor
elements when the corresponding abstract parts are defined to be of
types from a different namespace than the targetNamespace of the
WSDL description for the abstract parts.

R2737 An ENVELOPE described with an rpc-literal
binding MUST namespace qualify the children
of part accessor elements for the parameters
and the return value with the targetNamespace
in which their types are defined.

WSDL 1.1 Section 3.5 states: "The part names, types and value of the
namespace attribute are all inputs to the encoding, although the
namespace attribute only applies to content not explicitly defined by the
abstract types."
However, it does not explicitly state that the element and attribute
content of the abstract (complexType) types is namespace qualified to
the targetNamespace in which those elements and attributes were
defined. WSDL 1.1 was intended to function in much the same manner
as XML Schema. Hence, implementations must follow the same rules
as for XML Schema. If a complexType defined in targetNamespace "A"
were imported and referenced in an element declaration in a schema
with targetNamespace "B", the element and attribute content of the child
elements of that complexType would be qualified to namespace "A" and
the element would be qualified to namespace "B".
For example,

CORRECT:

Given this WSDL, which defines some schema in the
"http://example.org/foo/" namespace in the wsdl:types section
contained within a wsdl:definitions that has a
targetNamespace attribute with the value
"http://example.org/bar/" (thus, having a type declared in one
namespace and the containing element defined in another);

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:soapbind="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:bar="http://example.org/bar/"
targetNamespace="http://example.org/bar/"
xmlns:foo="http://example.org/foo/">
<types>
 <xsd:schema
targetNamespace="http://example.org/foo/"

 xmlns:tns="http://example.org/foo/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">
 <xsd:complexType name="fooType">
 <xsd:sequence>
 <xsd:element ref="tns:bar"/>
 <xsd:element ref="tns:baf"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="bar" type="xsd:string"/>
 <xsd:element name="baf" type="xsd:integer"/>
 </xsd:schema>
</types>
<message name="BarMsg">
 <part name="BarAccessor" type="foo:fooType"/>
</message>
<portType name="BarPortType">
 <operation name="BarOperation">
 <input message="bar:BarMsg"/>
 </operation>
</portType>
<binding name="BarSOAPBinding" type="bar:BarPortType">
 <soapbind:binding
 transport="http://schemas.xmlsoap.org/soap/http/"
 style="rpc"/>
 <operation name="BarOperation">
 <input message="bar:BarMsg">
 <soapbind:body use="literal"
namespace="http://example.org/bar/"/>
 </input>
 </operation>
</binding>
<service name="serviceName">
 <port name="BarSOAPPort"
binding="bar:BarSOAPBinding">
 <soapbind:address
location="http://example.org/myBarSOAPPort"/>
 </port>
</service>
</definitions>

The resulting envelope for BarOperation is:

<s:Envelope
xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:foo="http://example.org/foo/">
 <s:Header/>
 <s:Body>
 <m:BarOperation
xmlns:m="http://example.org/bar/">
 <BarAccessor>
 <foo:bar>String</foo:bar>
 <foo:baf>0</foo:baf>

 </BarAccessor>
 </m:BarOperation>
 </s:Body>
</s:Envelope>

4.7.22 Required Headers

WSDL 1.1 does not clearly specify whether all soapbind:headers
specified on the wsdl:input or wsdl:output elements of a
wsdl:operation element in the SOAP binding section of a WSDL
description must be included in the resultant envelopes when they are
transmitted. The Profile makes all such headers mandatory, as there is
no way in WSDL 1.1 to mark a header optional.

R2738 An ENVELOPE MUST include all
soapbind:headers specified on a wsdl:input or
wsdl:output of a wsdl:operation of a
wsdl:binding that describes it.

4.7.23 Allowing Undescribed Headers

Headers are SOAP's extensibility mechanism. Headers that are not
defined in the WSDL description may need to be included in the
envelopes for various reasons.

R2739 An ENVELOPE MAY contain SOAP header
blocks that are not described in the
wsdl:binding that describes it.

R2753 An ENVELOPE containing SOAP header blocks
that are not described in the appropriate
wsdl:binding MAY have the mustUnderstand
attribute on such SOAP header blocks set to '1'.

4.7.24 Ordering Headers

There is no correlation between the order of soapbind:headers in the
description and the order of SOAP header blocks in the envelope.
Similarly, more than one instance of each specified SOAP header block
may occur in the envelope.

R2751 The order of soapbind:header elements in
soapbind:binding sections of a
DESCRIPTION MUST be considered
independent of the order of SOAP header
blocks in the envelope.

R2752 An ENVELOPE MAY contain more than one
instance of each SOAP header block for each
soapbind:header element in the appropriate

child of soapbind:binding in the corresponding
description.

4.7.25 Describing SOAPAction

Interoperability testing has demonstrated that requiring the SOAPAction
HTTP header field-value to be quoted increases interoperability of
implementations. Even though HTTP allows for header field-values to
be unquoted, some implementations require that the value be quoted.
The SOAPAction header is purely a hint to processors. All vital
information regarding the intent of a message is carried in the envelope.

R2744 A HTTP request MESSAGE MUST contain a
SOAPAction HTTP header field with a quoted
value equal to the value of the soapAction
attribute of soapbind:operation, if present in
the corresponding WSDL description.

R2745 A HTTP request MESSAGE MUST contain a
SOAPAction HTTP header field with a quoted
empty string value, if in the corresponding
WSDL description, the soapAction of
soapbind:operation is either not present, or
present with an empty string as its value.

See also R1119 and related requirements for more discussion of
SOAPAction.
For example,

CORRECT:

A WSDL Description that has:

<soapbind:operation soapAction="foo" />

results in a message with a corresponding SOAPAction HTTP
header field as follows:

SOAPAction: "foo"

CORRECT:

A WSDL Description that has:

<soapbind:operation />

or

<soapbind:operation soapAction="" />

results in a message with a corresponding SOAPAction HTTP
header field as follows:

SOAPAction: ""

4.7.26 SOAP Binding Extensions

The wsdl:required attribute has been widely misunderstood and used
by WSDL authors sometimes to incorrectly indicate the optionality of
soapbind:headers. The wsdl:required attribute, as specified in
WSDL1.1, is an extensibility mechanism aimed at WSDL processors. It
allows new WSDL extension elements to be introduced in a graceful
manner. The intent of wsdl:required is to signal to the WSDL processor
whether the extension element needs to be recognized and understood
by the WSDL processor in order that the WSDL description be correctly
processed. It is not meant to signal conditionality or optionality of some
construct that is included in the envelopes. For example, a
wsdl:required attribute with the value "false" on a soapbind:header
element must not be interpreted to signal to the WSDL processor that
the described SOAP header block is conditional or optional in the
envelopes generated from the WSDL description. It is meant to be
interpreted as "in order to send a envelope to the endpoint that includes
in its description the soapbind:header element, the WSDL processor
MUST understand the semantic implied by the soapbind:header
element."
The default value for the wsdl:required attribute for WSDL 1.1 SOAP
Binding extension elements is "false". Most WSDL descriptions in
practice do not specify the wsdl:required attribute on the SOAP
Binding extension elements, which could be interpreted by WSDL
processors to mean that the extension elements may be ignored. The
Profile requires that all WSDL SOAP 1.1 extensions be understood and
processed by the consumer, irrespective of the presence or the value of
the wsdl:required attribute on an extension element.

R2747 A CONSUMER MUST understand and process
all WSDL 1.1 SOAP Binding extension
elements, irrespective of the presence or
absence of the wsdl:required attribute on an
extension element; and irrespective of the
value of the wsdl:required attribute, when
present.

R2748 A CONSUMER MUST NOT interpret the
presence of the wsdl:required attribute on a
soapbind extension element with a value of
"false" to mean the extension element is
optional in the envelopes generated from the
WSDL description.

4.8 Use of XML Schema

The following specifications (or sections thereof) are referred to in this
section of the Profile;

• XML Schema Part 1: Structures
• XML Schema Part 2: Datatypes

WSDL 1.1 uses XML Schema as one of its type systems. The Profile
mandates the use of XML Schema as the type system for WSDL
descriptions of Web Services.

R2800 A DESCRIPTION MAY use any construct from
XML Schema 1.0.

R2801 A DESCRIPTION MUST use XML Schema 1.0
Recommendation as the basis of user defined
datatypes and structures.

5. Service Publication and Discovery
When publication or discovery of Web services is required, UDDI is the
mechanism the Profile has adopted to describe Web service providers
and the Web services they provide. Business, intended use, and Web
service type descriptions are made in UDDI terms; detailed technical
descriptions are made in WSDL terms. Where the two specifications
define overlapping descriptive data and both forms of description are
used, the Profile specifies that the descriptions must not conflict.

Registration of Web service instances in UDDI registries is optional. By
no means do all usage scenarios require the kind of metadata and
discovery UDDI provides, but where such capability is needed, UDDI is
the sanctioned mechanism.

Note that the Web services that constitute UDDI V2 are not fully
conformant with the Profile 1.0 because they do not accept messages
whose envelopes are encoded in both UTF-8 and UTF-16 as required
by the Profile. (They accept UTF-8 only.) That there should be such a
discrepancy is hardly surprising given that UDDI V2 was designed and,
in many cases, implemented before the Profile was developed. UDDI's
designers are aware of UDDI V2's nonconformance and will take it into
consideration in their future work.

This section of the Profile incorporates the following specifications by
reference, and defines extensibility points within them;

• UDDI Version 2.04 API Specification, Dated 19 July 2002
• UDDI Version 2.03 Data Structure Reference, Dated 19 July

2002
• UDDI Version 2 XML Schema

5.1 bindingTemplates

The following specifications (or sections thereof) are referred to in this
section of the Profile;

• UDDI Version 2.03 Data Structure Reference, Section 7

UDDI represents Web service instances as uddi:bindingTemplate
elements. The uddi:bindingTemplate plays a role that is the rough
analog of the wsdl:port, but provides options that are not expressible in
WSDL. To keep the WSDL description of an instance and its UDDI
description consistent, the Profile places the following constraints on
how uddi:bindingTemplate elements may be constructed.

WSDL's soapbind:address element requires the network address of the
instance to be directly specified. In contrast, UDDI V2 provides two
alternatives for specifying the network address of instances it represents.
One, the uddi:accessPoint, mirrors the WSDL mechanism by directly
specifying the address. The other, the uddi:hostingRedirector,
provides a Web service-based indirection mechanism for resolving the
address, and is inconsistent with the WSDL mechanism.

R3100 REGDATA of type uddi:bindingTemplate
representing a conformant INSTANCE MUST
contain the uddi:accessPoint element.

For example,
INCORRECT:
<bindingTemplate bindingKey="...">
 <description xml:lang="EN">BarSOAPPort</description>
 <hostingRedirector bindingKey="..."/>
 <tModelInstanceDetails>
 ...
 </tModelInstanceDetails>
</bindingTemplate>

CORRECT:
<bindingTemplate bindingKey="...">
 <description xml:lang="EN">BarSOAPPort</description>

<accessPoint>http://example.org/myBarSOAPPort</accessPo
int>
 <tModelInstanceDetails>
 ...
 </tModelInstanceDetails>

</bindingTemplate>

5.2 tModels

The following specifications (or sections thereof) are referred to in this
section of the Profile;

• UDDI Version 2.03 Data Structure Reference, Section 8

UDDI represents Web service types as uddi:tModel elements. (See
UDDI Data Structures section 8.1.1.) These may, but need not, point
(using a URI) to the document that contains the actual description.
Further, UDDI is agnostic with respect to the mechanisms used to
describe Web service types. The Profile cannot be agnostic about this
because interoperation is very much complicated if Web service types
do not have descriptions or if the descriptions can take arbitrary forms.

The UDDI API Specification, appendix I.1.2.1.1 allows but does not
require uddi:tModel elements that use WSDL to describe the Web
service type they represent to state that they use WSDL as the
description language. Not doing so leads to interoperability problems
because it is then ambiguous what description language is being used.

Therefore the Profile places the following constraints on how
uddi:tModel elements that describe Web service types may be
constructed:

The Profile chooses WSDL as the description language because it is by
far the most widely used such language.

R3002 REGDATA of type uddi:tModel representing a
conformant Web service type MUST use
WSDL as the description language.

To specify that conformant Web service types use WSDL, the Profile
adopts the UDDI categorization for making this assertion.

R3003 REGDATA of type uddi:tModel representing a
conformant Web service type MUST be
categorized using the uddi:types taxonomy and
a categorization of "wsdlSpec".

For the uddi:overviewURL in a uddi:tModel to resolve to a wsdl:binding,
the Profile must adopt a convention for distinguishing among multiple
wsdl:bindings in a WSDL document. The UDDI Best Practice for Using

WSDL in a UDDI Registry specifies the most widely recognized such
convention.

R3010 REGDATA of type uddi:tModel representing a
conformant Web service type MUST follow
V1.08 of the UDDI Best Practice for Using
WSDL in a UDDI Registry.

It would be inconsistent if the wsdl:binding that is referenced by the
uddi:tModel does not conform to the Profile.

R3011 The wsdl:binding that is referenced by
REGDATA of type uddi:tModel MUST itself
conform to the Profile.

6. Security
As is true of all network-oriented information technologies, the subject of
security is a crucial one for Web services. For Web services, as for
other information technologies, security consists of understanding the
potential threats an attacker may mount and applying operational,
physical, and technological countermeasures to reduce the risk of a
successful attack to an acceptable level. Because an "acceptable level
of risk" varies hugely depending on the application, and because costs
of implementing countermeasures is also highly variable, there can be
no universal "right answer" for securing Web services. Choosing the
absolutely correct balance of countermeasures and acceptable risk can
only be done on a case by case basis.

That said, there are common patterns of countermeasures that
experience shows reduce the risks to acceptable levels for many Web
services. The Profile adopts, but does not mandate use of, the most
widely used of these: HTTP secured with either TLS 1.0 or SSL 3.0
(HTTPS). That is, conformant Web services may use HTTPS; they may
also use other countermeasure technologies or none at all.

HTTPS is widely regarded as a mature standard for encrypted transport
connections to provide a basic level of confidentiality. HTTPS thus
forms the first and simplest means of achieving some basic security
features that are required by many real-world Web service applications.
HTTPS may also be used to provide client authentication through the
use of client-side certificates.

This section of the Profile incorporates the following specifications by
reference, and defines extensibility points within them;

• RFC2818: HTTP Over TLS
• RFC2246: The TLS Protocol Version 1.0

Extensibility points:
o TLS Cyphersuite - TLS allows for the use of arbitrary

encryption algorithms.
o TLS Extensions - TLS allows for extensions during the

handshake phase.
• The SSL Protocol Version 3.0

Extensibility points:
o SSL Cyphersuite - SSL allows for the use of arbitrary

encryption algorithms.
• RFC2459: Internet X.509 Public Key Infrastructure Certificate

and CRL Profile
Extensibility points:

o Certificate Authority - The choice of the Certificate
Authority is a private agreement between parties.

o Certificate Extensions - X509 allows for arbitrary certificate
extensions.

6.1 Use of HTTPS

HTTPS is such a useful, widely understood basic security mechanism
that the Profile needs to allow it.

R5000 An INSTANCE MAY require the use of HTTPS.
R5001 If an INSTANCE requires the use of HTTPS, the

location attribute of the soapbind:address
element in its wsdl:port description MUST be
a URI whose scheme is "https"; otherwise it
MUST be a URI whose scheme is "http".

Simple HTTPS provides authentication of the Web service instance by
the consumer but not authentication of the consumer by the instance.
For many instances this leaves the risk too high to permit interoperation.
Including the mutual authentication facility of HTTPS in the Profile
permits instances to use the countermeasure of authenticating the
consumer. In cases in which authentication of the instance by the
consumer is insufficient, this often reduces the risk sufficiently to permit
interoperation.

R5010 An INSTANCE MAY require the use of HTTPS
with mutual authentication.

Appendix I: Referenced Specifications

The following specifications' requirements are incorporated into the
Profile by reference, except where superseded by the Profile:

• Simple Object Access Protocol (SOAP) 1.1
• RFC2616: Hypertext Transfer Protocol -- HTTP/1.1
• RFC2965: HTTP State Management Mechanism
• Extensible Markup Language (XML) 1.0 (Second Edition)
• Web Services Description Language (WSDL) 1.1
• XML Schema Part 1: Structures
• XML Schema Part 2: Datatypes
• UDDI Version 2.04 API Specification, Dated 19 July 2002
• UDDI Version 2.03 Data Structure Reference, Dated 19 July

2002
• UDDI Version 2 XML Schema
• RFC2818: HTTP Over TLS
• RFC2246: The TLS Protocol Version 1.0
• The SSL Protocol Version 3.0
• RFC2459: Internet X.509 Public Key Infrastructure Certificate

and CRL Profile

Appendix II: Extensibility Points
This section identifies extensibility points, as defined in "Scope of the
Profile," for the Profile's component specifications.

These mechanisms are out of the scope of the Profile; their use may
affect interoperability, and may require private agreement between the
parties to a Web service.

In Simple Object Access Protocol (SOAP) 1.1:

• Header blocks - Header blocks are the fundamental extensibility
mechanism in SOAP.

• Processing order - The order of processing of a SOAP
message's components (e.g., headers) is unspecified, and
therefore may need to be negotiated out-of-band.

• Use of intermediaries - SOAP Intermediaries is an
underspecified mechanism in SOAP 1.1, and their use may
require out-of-band negotiation. Their use may also necessitate
careful consideration of where Profile conformance is measured.

• soap:actor values - The value of the soap:actor attribute is a
private agreement between the parties to a Web service.

• Fault details - the contents of a Fault's detail element are not
prescribed by SOAP 1.1.

• Envelope serialization - The Profile does not constrain some
aspects of how the envelope is serialized into the message.

In RFC2616: Hypertext Transfer Protocol -- HTTP/1.1:

• HTTP Authentication - HTTP authentication allows for extension
schemes, arbitrary digest hash algorithms and parameters.

• Unspecified Header Fields - HTTP allows arbitrary headers to
occur in messages.

• Expect-extensions - The Expect/Continue mechanism in HTTP
allows for expect-extensions.

• Content-Encoding - The set of content-codings allowed by
HTTP is open-ended.

• Transfer-Encoding - The set of transfer-encodings allowed by
HTTP is open-ended.

• Upgrade - HTTP allows a connection to change to an arbitrary
protocol using the Upgrade header.

In Web Services Description Language (WSDL) 1.1:

• WSDL extensions - WSDL allows extension elements in certain
places; use of such extensions requires out-of-band negotiation.

• Relative URIs - WSDL does not adequately specify the use of
relative URIs; their use may require further coordination; see
XML Base for more information.

• Validation mode - whether the parser used to read WSDL and
XML Schema documents performs DTD validation or not.

• Fetching of external resources - whether the parser used to
read WSDL and XML Schema documents fetches external
entities and DTDs.

In XML Schema Part 1: Structures:

• Schema annotations - XML Schema allows for annotations,
which may be used to convey additional information about data
structures.

In RFC2246: The TLS Protocol Version 1.0:

• TLS Cyphersuite - TLS allows for the use of arbitrary encryption
algorithms.

• TLS Extensions - TLS allows for extensions during the
handshake phase.

In The SSL Protocol Version 3.0:

• SSL Cyphersuite - SSL allows for the use of arbitrary encryption
algorithms.

In RFC2459: Internet X.509 Public Key Infrastructure Certificate and
CRL Profile:

• Certificate Authority - The choice of the Certificate Authority is
a private agreement between parties.

• Certificate Extensions - X509 allows for arbitrary certificate
extensions.

Appendix III: Acknowledgements
This Profile is the work of the WS-I Basic Profile Working Group, whose
members have included:

Mark Allerton (Crystal Decisions Corporation), George Arriola (Talking
Blocks, Inc.), Keith Ballinger (Microsoft Corporation), Ilya Beyer (KANA),
Rich Bonneau (IONA Technologies), Don Box (Microsoft Corporation),
Andrew Brown (Verisign), Heidi Buelow (Quovadx), David Burdett
(Commerce One, Inc.), Luis Felipe Cabrera (Microsoft Corporation),
Maud Cahuzac (France Telecom), Bhaskar Chakrabarti (United Airlines),
Chia Chao (IONA Technologies), Martin Chapman (Oracle Corporation),
Richard Chin (Avinon), Roberto Chinnici (Sun Microsystems), Sergio
Compean (Avanade, Inc.), Tim Cooke (Onyx Software), Ugo Corda
(SeeBeyond Tech), Paul Cotton (Microsoft Corporation), Joseph Curran
(Accenture), Ayse Dilber (AT&T), Dave Ehnebuske (IBM), Mark Ericson
(Mindreef Inc.), Colleen Evans (Sonic Software), Tim Ewald (Microsoft
Corporation), Chuck Fay (FileNet Corporation), Chris Ferris (IBM),
Daniel Foody (Actional Corporation), Toru Fujii (NTT), Satoru Fujita
(NEC Corporation), Shishir Garg (France Telecom), Yaron Goland (BEA
Systems), Hans Granqvist (Verisign), Martin Gudgin (Microsoft
Corporation), Marc Hadley (Sun Microsystems), Bob Hall (Unisys
Corporation), Scott Hanselman (Corillian), Muir Harding (Autodesk, Inc.),
Loren Hart (Verisign), Harry Holstrom (Accenture), Larry Hsiung
(Quovadx), Hemant Jain (Tata Consultancy), Steve Jenisch (SAS
Institute), Erik Johnson (Epicor Software Corporation), Bill Jones
(Oracle Corporation), Menno Jonkers (Tryllian BV), Anish Karmarkar
(Oracle Corporation), Takahiro Kawamura (Toshiba), Bhushan Khanal
(WRQ, Inc.), Sunil Kunisetty (Oracle Corporation), Canyang Kevin Liu
(SAP AG), Jonathan Marsh (Microsoft Corporation), David Meyer
(Plumtree Software, Inc.), Jeff Mischkinsky (Oracle Corporation), Tom
Moog (Sarvega Inc.), Gilles Mousseau (Hummingbird Ltd.), Richard
Nikula (BMC Software, Inc.), Eisaku Nishiyama (Hitachi, Ltd.), Mark
Nottingham (BEA Systems), David Orchard (BEA Systems), Jesse
Pangburn (Quovadx), TJ Pannu (ContentGuard, Inc.), Eduardo Pelegri-
Llopart (Sun Microsystems), Vijay Rajan (Novell), Eric Rajkovic (Oracle
Corporation), Graeme Riddell (Bowstreet), Claus von Riegen (SAP AG),
Tom Rutt (Fujitsu Limited), Roger Sanborn (Crystal Decisions

Corporation), Krishna Sankar (Cisco Systems, Inc.), Don Schricker
(Micro Focus), Dave Seidel (Mindreef Inc.), Akira Shimaya (NTT),
Yasser Shohoud (Microsoft Corporation), David Smiley (Mercator
Software, Inc.), Seumas Soltysik (IONA Technologies), Joseph Stanko
(Plumtree Software, Inc.), Keith Stobie (Microsoft Corporation), Yasuo
Takemoto (NTT), Nobuyoshi Tanaka (NEC Corporation), Jorgen Thelin
(Cape Clear Software), Sameer Vaidya (Talking Blocks, Inc.), William
Vambenepe (Hewlett-Packard), Rick Weil (Eastman Kodak Company),
Scott Werden (WRQ, Inc.), Ajamu Wesley (IBM), Shannon Wheatley
(Kinzan, Inc.), Ian White (Micro Focus), Sue Worthman (Tryllian BV),
Prasad Yendluri (webMethods Inc.).

