[image: image1.png]
Reliable Secure Profile 1.0 Test Scenarios

Document Status: WS-I Working Group Approval Draft

Version: 1.0

Date: September 09, 2010
Editors:

Ram Jeyaraman, Microsoft (ram.jeyaraman@microsoft.com)

Notices

Copyright © 2002-2010 by The Web Services-Interoperability Organization (WS-I) and Certain of its Members. All Rights Reserved.

Abstract

This document proposes a set of scenarios for testing interoperability for Reliable Secure Profile 1.0. This document is intended to provide the information necessary to implement the described scenarios.
Notice

The material contained herein is not a license, either expressly or impliedly, to any intellectual property owned or controlled by any of the authors or developers of this material or WS-I. The material contained herein is provided on an "AS IS" basis and to the maximum extent permitted by applicable law, this material is provided AS IS AND WITH ALL FAULTS, and the authors and developers of this material and WS-I hereby disclaim all other warranties and conditions, either express, implied or statutory, including, but not limited to, any (if any) implied warranties, duties or conditions of merchantability, of fitness for a particular purpose, of accuracy or completeness of responses, of results, of workmanlike effort, of lack of viruses, and of lack of negligence. ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT, QUIET POSSESSION, AND CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH REGARD TO THIS MATERIAL.

IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR WS-I BE LIABLE TO ANY OTHER PARTY FOR THE COST OF PROCURING SUBSTITUTE GOODS OR SERVICES, LOST PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING IN ANY WAY OUT OF THIS OR ANY OTHER AGREEMENT RELATING TO THIS MATERIAL, WHETHER OR NOT SUCH PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

Feedback

The Web Services-Interoperability Organization (WS-I) would like to receive input, suggestions and other feedback ("Feedback") on this work from a wide variety of industry participants to improve its quality over time.

By sending email, or otherwise communicating with WS-I, you (on behalf of yourself if you are an individual, and your company if you are providing Feedback on behalf of the company) will be deemed to have granted to WS-I, the members of WS-I, and other parties that have access to your Feedback, a non-exclusive, non-transferable, worldwide, perpetual, irrevocable, royalty-free license to use, disclose, copy, license, modify, sublicense or otherwise distribute and exploit in any manner whatsoever the Feedback you provide regarding the work. You acknowledge that you have no expectation of confidentiality with respect to any Feedback you provide. You represent and warrant that you have rights to provide this Feedback, and if you are providing Feedback on behalf of a company, you represent and warrant that you have the rights to provide Feedback on behalf of your company. You also acknowledge that WS-I is not required to review, discuss, use, consider or in any way incorporate your Feedback into future versions of its work. If WS-I does incorporate some or all of your Feedback in a future version of the work, it may, but is not obligated to include your name (or, if you are identified as acting on behalf of your company, the name of your company) on a list of contributors to the work. If the foregoing is not acceptable to you and any company on whose behalf you are acting, please do not provide any Feedback.

Feedback on this document should be directed to wsi_rsp_comment@ws-i.org.
Table of Contents

51
Scenarios

51.1
Reliable one-way

51.1.1
Reliable_OneWay_BPx.x_AddressableClient_AddressableService

61.1.2
Reliable_OneWay_BPx.x_NonAddressableClient_AddressableService

61.2
Reliable request-response

61.2.1
Reliable_RequestReply_BPx.x_AddressableClient_AddressableService_Offer

71.2.2
Reliable_RequestReply_BPx.x_AddressableClient_AddressableService_NoOffer

81.2.3
Reliable_RequestReply_BPx.x_NonAddressableClient_AddressableService_Offer

91.2.4
Reliable_RequestReply_BPx.x_NonAddressableClient_AddressableService_NoOffer

101.3
Retransmission Scenarios

101.3.1
Reliable_OneWay_BP20_AddressableClient_AddressableService_DropMessage

101.3.2
Reliable_RequestReply_BP20_NonAddressableClient_AddressableService_DropFirstMessageOnce

111.3.3
SecureReliable One-Way Addressable Drop Message

111.3.4
SecureReliable Request-Reply Non-Addressable Drop Message

111.4
Negative Scenarios

111.4.1
Fault-CreateSequence

111.4.2
Secure Fault-CreateSequence

111.4.2.1
Secure Fault-CreateSequence-SOAP11

121.4.2.2
Secure Fault-CreateSequence-SOAP12

121.4.3
Test for R0001

121.4.4
Test for R0400

121.5
Request/Response - non-addressable client

131.6
Non-addressable Service

131.6.1
Reliable One-way – Addressable Client / Non-addressable Service

131.6.2
Request/Response - non-addressable service

131.6.3
Request/Response - non-addressable secure service

141.7
Secure Conversation

141.8
Reliable request-response with App fault

151.9
Sequence carry-over and independence

151.10
Dropping of lifecycle messages

161.11
Reliable_One_Way_Requests_Anon_AcksTo_Multiple_Sequences

161.12
Reliable_Request_Response_AcksTo_RefParm

171.13
Reliable_Request_Empty_Response

171.14
WS-MakeConnection faults

172
Appendix – WSDL operations

183
Appendix – Test WSDL

204
Appendix – XSD

215
Appendix – Test WSDL (RspEmpty.wsdl) for scenario 1.13

226
Appendix – Test WSDL (RspEmpty0.wsdl) for scenario 1.13

237
Appendix – Test XSD (RspEmpty.xsd) for scenario 1.13

238
Appendix - Security configuration information

238.1
Bootstrap

248.2
Outer policy

248.2.1
Sign-Only Security Configuration

248.2.2
Sign-and-encrypt configuration

258.3
Certificate Configuration

258.3.1
Client

258.3.2
Server

258.4
Scenario Policies

258.4.1
Example – Security policy for sign-only configuration

288.4.2
Example – Security policy for sign-and-encrypt configuration

329
Acknowledgements

3210
Revision History

The purpose of these scenarios is to cover profile requirements. However, these scenarios do not cover all requirements set forth in RSP 1.0, but should be adequate enough to cover most of the requirements. Even though each of the scenarios is different, some of scenarios may test the same profile requirements as other scenarios. In such cases, implementers may choose to implement one of such overlapping scenarios and not implement all of the overlapping scenarios.
Testing some of the requirements specified in RSP can be easily done by examining common message flows between two endpoints. However, in some cases the requirements might require certain preconditions or runtime semantics that necessitate a client or a service endpoint to take certain actions that are specific to the tests defined by the RSP test scenario documentation. In such cases, implementations being tested need to determine how best to recreate those environmental conditions; for example, a specialized test driver may be needed to implement some parts of the test scenarios.
1 Scenarios
1.1 Reliable one-way
Client establishes a Reliable Session, then sends a message and initiates a close of the Session.
1.1.1 Reliable_OneWay_BPx.x_AddressableClient_AddressableService

In this scenario, one-way exchange is used. The Client’s application-level message is a simple Ping message, and no application-level response is expected. Since one-way exchange is used, there is no requirement to use WS-MakeConnection messages.
Message Exchange Pattern
The sequence begins with a CreateSequence message sent from the Client to the Service. The Service responds on the HTTP response with a CreateSequenceResponse. The Client then sends a Ping message. The Service responds by acknowledging the message with a SequenceAcknowledgement; there are no application messages to be sent on the HTTP response. Finally, the sequence is closed by the Client sending a CloseSequence message. The Service responds with a CloseSequenceResponse. Last, the Client sends a TerminateSequence to which the Service responds with a TerminateSequenceResponse.
Expanded Scenarios
The following sub-scenarios expand this high-level scenario over BP 1.2, BP 2.0, and use of security.
	Scenario number
	Scenario name

	1.1.1.1
	Reliable_OneWay_BP12_AddressableClient_AddressableService

	1.1.1.2
	Reliable_OneWay_BP20_AddressableClient_AddressableService

	1.1.1.3
	Secure_Reliable_OneWay_BP12_AddressableClient_AddressableService

	1.1.1.4
	Secure_Reliable_OneWay_BP20_AddressableClient_AddressableService

For secure scenarios, refer to section 8 Appendix - Security configuration information for security configuration information.
1.1.2 Reliable_OneWay_BPx.x_NonAddressableClient_AddressableService

In this scenario, the Client is non-addressable. But since it is One-Way, the Server can use the HTTP response for responses. Use of WS-MakeConnection is not necessary.
Message Exchange Pattern

The sequence begins with a CreateSequence message sent from the Client to the Service. The Service responds with a CreateSequenceResponse on the HTTP response. The Client then sends a Ping message. The Service only responds by acknowledging the message with a SequenceAcknowledgement on the HTTP response. The “To” header of the SequenceAcknowledgement is the WS-Addressing anonymous URI, since no MakeConnection was used. Finally, the sequence is closed by the Client sending a CloseSequence message. The Service responds with a CloseSequenceResponse. Last, the Client sends a TerminateSequence to which the Service responds with a TerminateSequenceResponse.

Expanded Scenarios
The following sub-scenarios expand this high-level scenario over BP 1.2, BP 2.0, and use of security.
	Scenario number
	Scenario name

	1.1.2.1
	Reliable_OneWay_BP12_NonAddressableClient_AddressableService

	1.1.2.2
	Reliable_OneWay_BP20_NonAddressableClient_AddressableService

	1.1.2.3
	Secure_Reliable_OneWay_BP12_NonAddressableClient_AddressableService

	1.1.2.4
	Secure_Reliable_OneWay_BP20_NonAddressableClient_AddressableService

For secure scenarios, refer to section 8 Appendix - Security configuration information for security configuration information.
1.2 Reliable request-response

These scenarios will follow the basic pattern of opening a sequence, sending 3 application messages, then closing the sequence. The non-addressable scenarios using MakeConnection will cover R2004, R2100, R2101, R2110, R2111, R2112, and R2113. The Secure scenarios cover R3010, R3100, R3101, R3102, R3110, R3111, R3114, R3115, and R3300. The RequestReply scenarios will cover R0010, R0011, R0020, and R0200. All scenarios will be covering R0102, R0210, R0600, R0800, R0900, R0901, and R2005.

The term, “request sequence” is used to define the sequence initiated by the Client. The term, “response sequence” is used to define the sequence initiated by the Service.

1.2.1 Reliable_RequestReply_BPx.x_AddressableClient_AddressableService_Offer
This scenario introduces a Request-Reply pattern. For application-level messages, the Client will send an Echo message, to which the Server will respond with an EchoResponse message. In this case, both the Client and Service are addressable, so the use of WS-MakeConnection is not necessary. The message exchanges happen reliably from the Client to the Service and from the Service to the Client.
Message Exchange Pattern

The sequence begins with a CreateSequence message sent from the Client to the Service. The body of this CreateSequence message contains the “offer” element so that the Service can establish a sequence with the endpoint in the “offer.” This sequence will be referred to as the “return sequence.” The “AcksTo” and “ReplyTo” headers in the CreateSequence uses an addressable URI same as the endpoint in the “offer”. The Service responds with a CreateSequenceResponse. The Client then sends an Echo message. The Service responds with a SequenceAcknowledgement and an EchoResponse message on the return sequence. The Client responds to the EchoResponse with a SequenceAcknowledgement on the request sequence. Finally, the sequence is closed by the Client sending a CloseSequence message. The Service responds with a CloseSequenceResponse. Then, the Client sends a TerminateSequence to which the Service responds with a TerminateSequenceResponse. Optionally, this sequence closing may also happen for the return sequence from the Service to the Client.
Note: The lifecycle messages may contain a WS-Addressing [reply endpoint] property set to a WS-Addressing anonymous URI.

Expanded Scenarios
The following sub-scenarios expand this high-level scenario over BP 1.2, BP 2.0, and use of security.

	Scenario number
	Scenario name

	1.2.1.1
	Reliable_RequestReply_BP12_AddressableClient_AddressableService_Offer

	1.2.1.2
	Reliable_RequestReply_BP20_AddressableClient_AddressableService_Offer

	1.2.1.3
	Secure_Reliable_RequestReply_BP12_AddressableClient_AddressableService_Offer

	1.2.1.4
	Secure_Reliable_RequestReply_BP20_AddressableClient_AddressableService_Offer

For secure scenarios, refer to section 8 Appendix - Security configuration information for security configuration information.

1.2.2 Reliable_RequestReply_BPx.x_AddressableClient_AddressableService_NoOffer

The sequence begins with a CreateSequence message sent from the Client to the Service. The body of this CreateSequence message does not contain the “offer” element. The Service responds with a CreateSequenceResponse on the HTTP response. Since an “offer” is not included in the CreateSequence, the Service must issue a CreateSequence for the response sequence to the Client to which the Client responds with a CreateSequenceResponse. The Client then sends an Echo message. The Service responds with a SequenceAcknowledgement and an EchoResponse message on the return sequence. Note that piggybacking may or may not occur.

The Client responds to the EchoResponse with a SequenceAcknowledgement on the request sequence. Finally, the sequence is closed by the Client sending a CloseSequence message. The Service responds with a CloseSequenceResponse. Then, the Client sends a TerminateSequence to which the Service responds with a TerminateSequenceResponse. Optionally, this sequence closing may also happen for the return from the Service to the Client.
Expanded Scenarios
The following sub-scenarios expand this high-level scenario over BP 1.2, BP 2.0, and use of security.

	Scenario number
	Scenario name

	1.2.2.1
	Reliable_RequestReply_BP12_AddressableClient_AddressableService_NoOffer

	1.2.2.2
	Reliable_RequestReply_BP20_AddressableClient_AddressableService_NoOffer

	1.2.2.3
	Secure_Reliable_RequestReply_BP12_AddressableClient_AddressableService_NoOffer

	1.2.2.4
	Secure_Reliable_RequestReply_BP20_AddressableClient_AddressableService_NoOffer

For secure scenarios, refer to section 8 Appendix - Security configuration information for security configuration information.
1.2.3 Reliable_RequestReply_BPx.x_NonAddressableClient_AddressableService_Offer
This scenario uses MakeConnection messages issued by the Client to get messages from the Service. Because the Client is not addressable, all Reply-To and AcksTo addresses from the Client point to the MakeConnection Anonymous URI.
Message Exchange Pattern

The sequence begins with a CreateSequence message sent from the Client to the Service. Since the Client is Non-Addressable the Service responds on the HTTP response with a CreateSequenceResponse. An “offer” element (containing an instance of MakeConnection Anonymous URI) is used in the body of the CreateSequence for the Service to establish a return session with the Client. The Client then sends an Echo message. The Client will also send a MakeConnection message to the Service on the response sequence to get the EchoResponse message.
The Service replies to the Echo message with a SequenceAcknowledgement on either the HTTP response of the request sequence or directly on the response sequence in response to the MakeConnection. The Service sends Sequence Acknowledgements on the HTTP response if the wsa:ReplyTo of the request matches the AcksTo EPR (including reference parameters). Otherwise, the Service sends the Sequence Acknowledgement only as a result of a Make Connection.

When the Service has the EchoResponse available, it sends the EchoResponse on the response sequence in response to a MakeConnection issued by the Client. When the Client gets the EchoResponse, it responds with a SequenceAcknowledgement on the request sequence.
Finally, the sequence is closed by the Client sending a CloseSequence message. The Service responds on the HTTP response with a CloseSequenceResponse. Then, the Client sends a TerminateSequence, to which the Service responds with a TerminateSequenceResponse. A similar exchange may happen for the response sequence, but the Client must issue MakeConnection messages to get the CloseSequence and TerminateSequence messages from the Service.
Note, in this message exchange pattern, piggybacking may or may not occur.
Expanded Scenarios
The following sub-scenarios expand this high-level scenario over BP 1.2, BP 2.0, and use of security.

	Scenario number
	Scenario name

	1.2.3.1
	Reliable_RequestReply_BP12_NonAddressableClient_AddressableService_Offer

	1.2.3.2
	Reliable_RequestReply_BP20_NonAddressableClient_AddressableService_Offer

	1.2.3.3
	Secure_Reliable_RequestReply_BP12_NonAddressableClient_AddressableService_Offer

	1.2.3.4
	Secure_Reliable_RequestReply_BP20_NonAddressableClient_AddressableService_Offer

For secure scenarios, refer to section 8 Appendix - Security configuration information for security configuration information.
1.2.4 Reliable_RequestReply_BPx.x_NonAddressableClient_AddressableService_NoOffer

This scenario uses MakeConnection messages issued by the Client to get messages from the Service.

Message Exchange Pattern

The sequence begins with a CreateSequence message sent from the Client to the Service. Since the Client is Non-Addressable, and exchange is Request-Reply, the Service responds on the HTTP response with a CreateSequenceResponse. Additionally, since the CreateSequence does not contain an “offer,” the Client must issue a MakeConnection on what is to be the Server’s response sequence with the Client. The Server responds to this with a CreateSequence. The Client responds to that CreateSequence with a CreateSequenceResponse. The Client then sends an Echo message. The Client will also send a MakeConnection message to the Service to get the EchoResponse message. The Service replies to the Echo message with a SequenceAcknowledgement either on the HTTP response of the request sequence or directly on the response sequence in response to the MakeConnection. When the Service has the EchoResponse available, it sends the EchoResponse on the response sequence in response to a MakeConnection issued by the Client. When the Client gets the EchoResponse, it responds with a SequenceAcknowledgement on the request sequence. Finally, the sequence is closed by the Client sending a CloseSequence message. The Service responds on the HTTP response with a CloseSequenceResponse. Then, the Client sends a TerminateSequence, to which the Service responds with a TerminateSequenceResponse. A similar exchange happens on the response sequence, but the Client must issue MakeConnection messages to get the CloseSequence and TerminateSequence messages from the Service.
Expanded Scenarios
The following sub-scenarios expand this high-level scenario over BP 1.2, BP 2.0, and use of security.

	Scenario number
	Scenario name

	1.2.4.1
	Reliable_RequestReply_BP12_NonAddressableClient_AddressableService_NoOffer

	1.2.4.2
	Reliable_RequestReply_BP20_NonAddressableClient_AddressableService_NoOffer

	1.2.4.3
	Secure_Reliable_RequestReply_BP12_NonAddressableClient_AddressableService_NoOffer

	1.2.4.4
	Secure_Reliable_RequestReply_BP20_NonAddressableClient_AddressableService_NoOffer

For secure scenarios, refer to section 8 Appendix - Security configuration information for security configuration information.
1.3 Retransmission Scenarios
A mechanism for dropping messages is required for these scenarios. This will test retrying messages. These scenarios cover R0101, R0102, R0110, and R0120. The secure retransmission scenarios cover R3301.
The following describes the retransmission scenarios. This section only describes the message exchange patterns. These scenarios are to be expanded by running both in the absence of Security and with Security enabled.

A mechanism for dropping specific sequence messages is required for these scenarios.

1.3.1 Reliable_OneWay_BP20_AddressableClient_AddressableService_DropMessage

This scenario tests retransmission of dropped messages with a One-Way scenario and addressable RM nodes. Retransmit unacknowledged sequence messages (One-Way pattern): Drop a sequence message from the Client at least once before allowing it to be sent to the Service. Both Client and Service are addressable.
Message Exchange Pattern

The sequence begins with a CreateSequence message sent from the Client to the Service. The Service responds with a CreateSequenceResponse. The Client then sends 1 Ping message. The message is dropped before the Server can receive it. Since the Client doesn’t receive a SequenceAcknowledgement from the Server, the Client will resend the message. Provided the message is not dropped this time, the Service will respond by acknowledging the message with a SequenceAcknowledgement on the HTTP response. Finally, the sequence is closed by the Client sending a CloseSequence message. The Service responds with a CloseSequenceResponse. The Client sends a TerminateSequence to which the Service responds with a TerminateSequenceResponse.
1.3.2 Reliable_RequestReply_BP20_NonAddressableClient_AddressableService_DropFirstMessageOnce

This scenario will use MakeConnection to get a dropped EchoResponse message from the Service. Since the scenario uses RequestReply with a Non-Addressable Client, the Client already issues MakeConnection calls to get every message from the Service.

Use MakeConnection to get unacknowledged messages.

· Request-Reply with Non-Addressable Client, Addressable Service.

· Client establishes a Sequence and sends an application request message (Echo).

· Server sends the application response message (EchoResponse), but it is dropped.

· The Server will resend the message because it never received a SequenceAcknowledgement.
Message Exchange Pattern

The sequence begins the same way as Reliable_RequestReply_BPx.x_NonAddressableClient_AddressableService_Offer. The Client then sends an Echo message. The Server replies on the HTTP response with a SequenceAcknowledgement. The Client sends a MakeConnection message to the Service on the response sequence to get the EchoResponse message. The Server replies to the MakeConnection with the EchoResponse message. This message is dropped before reaching the Client. The Client should continue to send MakeConnection, since it didn’t receive a response on the first MakeConnection request. The Server receives the MakeConnection and resends the EchoResponse. The message is not dropped this time. Upon receipt of the EchoResponse message, the Client sends a SequenceAcknowledgement back to the Service via a new HTTP request. The message exchanges are closed in the same manner as with Reliable_RequestReply_BPx.x_NonAddressableClient_AddressableService_Offer.
1.3.3 SecureReliable One-Way Addressable Drop Message

This is same as 1.3.1 but run under a secure environment (where message exchanges are secured using WS-SecureConversation). Refer to section 8 Appendix - Security configuration information for security configuration information.
1.3.4 SecureReliable Request-Reply Non-Addressable Drop Message
This is same as 1.3.2 but run under a secure environment (where message exchanges are secured using WS-SecureConversation). Refer to section 8 Appendix - Security configuration information for security configuration information.
1.4 Negative Scenarios
1.4.1 Fault-CreateSequence
Message Exchange Pattern
This covers R0400. The Client sends a CloseSequence, or TerminateSequence, or a normal application message containing an unknown WS-RM sequence identifier to the Service. The Service transmits an UnknownSequence fault message.
1.4.2 Secure Fault-CreateSequence
This scenario is identical to scenario 1.4.1, but run under a secure environment (where message exchanges are secured using WS-SecureConversation). Refer to section 8 Appendix - Security configuration information for security configuration information.
1.4.2.1 Secure Fault-CreateSequence-SOAP11

This uses SOAP 1.1. This covers requirements R3120, R3121, and R3122. This is similar to scenario 1.4.1 but run under a secure environment using SOAP 1.1. The Client sends a CloseSequence, or TerminateSequence, or a normal application message containing an unknown WS-RM sequence identifier to the Service. The Service transmits an UnknownSequence fault message; this fault message contains a wsrm:SequenceFault SOAP header carrying specific details about the fault.

1.4.2.2 Secure Fault-CreateSequence-SOAP12

This uses SOAP 1.2. This is similar to scenario 1.4.1 but run under a secure environment. The Client sends a CloseSequence, or TerminateSequence, or a normal application message containing an unknown WS-RM sequence identifier to the Service. The Service transmits an UnknownSequence fault message.

1.4.3 Test for R0001
The object of this scenario is to verify that the service does NOT generate a fault due to unrecognizable extensions. This scenario tests requirement R0001.
· A client-side RMS sends a CreateSequence with no offer but with an extension element qualified with a namespace (http://dummy.example.org/unknown/nmspace) in it. The expectation is that the namespace is unrecognizable by the service.
· The service-side RMD returns a CreateSequenceResponse containing a sequence identifier.

· The client-side RMS closes and terminates the sequence normally.
1.4.4 Test for R0400
This scenario tests requirement R0400.

· The client-side RMS sends a CloseSequence message with an unknown sequence identifier (http://dummy.example.org/unknown/nmspace) in it.

· The service-side RMD transmits an UnknownSequence fault message.
1.5 Request/Response - non-addressable client

This scenario involves a client sending a request message to a service and using MC to pull back the response. In this case we will mimic a situation where the service is a long-running service and thus cannot (or does not want) to keep the current transport back-channel open the entire time.
Message Exchange Pattern
Client sends a request message to the service. The request message includes a wsa:ReplyTo and wsa:FaultTo set to an instance of the MC Anonymous URI. The service returns an HTTP 202 Accepted. Periodically, the client will send a MakeConnection message to the service to allow for any possible response to flow. If the client used a different MC Anonymous URI for wsa:ReplyTo and wsa:FaultTo then it is expected that the client will send two different MakeConnection messages - however, the use of one or two URIs is an implementation choice. Upon receipt of a MC message, the service will either allow a pending message targeted for the included MC Anonymous URI to flow, or after waiting an certain amount of time for a message to be ready, it will return an HTTP 202 Accepted. The client is expected to continue to send MakeConnection messages until a response is received.
1.6 Non-addressable Service

1.6.1 Reliable One-way – Addressable Client / Non-addressable Service
In this scenario the client is addressable and the service is non-addressable. To initiate the message changes from the client, the client must first be given an EPR (using the MC Anonymous URI).
Message Exchange Pattern
The scenario begins with the service sending its EPR to the client (once we get the WSDL for the app msgs we can add this one) - the EPR uses an instance of the MC Anonymous URI since the service is non-addressable. The client then initiates a new RM Sequence with the service by trying to send a CreateSequence to the EPR it was provided, however the transmission of the CreateSequence is done by the service sending MC messages to the client. The service sends a MC to the client and pulls back the CreateSequence. The service response with a CSR to the CS's ReplyTo EPR. Normal one-way message scenario processing occurs (one-way app msgs, terminateSequence msgs are sent from the client to the service, acks are sent from the service to the client's CS/AcksTo EPR). Each of the messages from the client to the service is transmitted on the back-channel of a MC request message.
1.6.2 Request/Response - non-addressable service
This scenario involves a client initiating a sequence of messages exchanges to a service but the service is not addressable. As mentioned in the MC specification, a classic example of this is an event producer sending notifications to an event consumer, where the event consumer is behind a firewall. In this scenario the notion of a client and service are turned around and as such a new term, "Initiator", is introduced to represent the endpoint that starts the processing of the scenario. Note, the initiator may in reality be the "service" to keep the number of endpoints needed to run this scenario down to two.
Message Exchange Pattern
An initiator provides the client with the EPR to the service (a new operation may be needed here). This EPR contain an instance of the MC Anonymous URI to uniquely identify the service. The client will initiate a series of one-way and request-response messages with the service. Note, in the request-response case the wsa:ReplyTo will be an addressable EPR. Since the [destination] EPR for these messages is an instance of the MC Anonymous URI they will only be transmitted as result of the service sending a MC to the client. Thus, the service must periodically send a MC to the client. Upon receive of a message from the client, the service will process each message. If there is a response then it is sent to the appropriate EPR (replyTo vs faultTo) over a new HTTP connection.

1.6.3 Request/Response - non-addressable secure service
This scenario is the same as 1.6.2 Request/Response - non-addressable service except the first message sent by the client to the service is a RequestSecurityToken message. This will establish a secure conversation between the two endpoints. Refer to section 8 Appendix - Security configuration information for security configuration information. The remainder of the messages defined in 4.3 Request/Response - non-addressable service will be the same, except they are protected using this newly established security context. Upon completion of the application messages, the client will then send Cancel to shut down the secure conversation.
Message Exchange Pattern
An initiator provides the client with the EPR to the service (a new operation may be needed here). This EPR contain an instance of the MC Anonymous URI to uniquely identify the service. The client sends an RST to the service to initiate a new secure conversation. The service will response to the wsa:ReplyTo EPR over a new HTTP connection. The client will initiate a series of one-way and request-response messages with the service - each will be protected with the newly created security context. Note, in the request-response case the wsa:ReplyTo will be an addressable EPR. Since the [destination] EPR for these messages is an instance of the MC Anonymous URI they will only be transmitted as result of the service sending a MC to the client. Thus, the service must periodically send a MC to the client. Upon receive of a message from the client, the service, after verifying the messages are properly secured, will process each message. If there is a response then it is sent to the appropriate EPR (replyTo vs faultTo) over a new HTTP connection - again protected with the established security context. When the client is done it will send a Cancel to the service, also thru the use of a MC message exchange.

1.7 Secure Conversation

In this scenario we test the basics of the SecureConversation w.r.t. how RSP profiles its use. Refer to section 8 Appendix - Security configuration information for security configuration information.
Message Exchange Pattern
This scenario will involve the creation of a new security context, modifying it and then canceling it. The message overall flow will consist of:
1. Client sends an RST to the service
2. Service responds with an RSTR
3. Client sends an Echo, Service responds with an EchoResponse - both secured by the context established.
4. Client Renews the context (RST <-> RSTR)
5. Client sends an Echo, Service responds with an EchoResponse - both secured by the renewed context.
6. Client Cancels the context (RST <-> RSTR)
7. Client sends an Echo, Service rejects the request due to the context no longer being valid.
1.8 Reliable request-response with App fault

This scenario is the same as a reliable request/response except an application fault is generated for one of the messages.
Message Exchange Pattern
Follow the same MEP as for Reliable Request/Response+Offer: RMS sends CS+Offer. RMD responds with CSR+Accept. RMS sends a series of request messages. RMD responds with either non-faulting response, or with a fault based on the data within the request; upon receipt of an application message (Notify or Echo) whose 'text' value is 'fault', or an empty string, the service will generate a Fault. Each response, non-fault or fault, will be sent using the Offered sequence from the original CS/CSR exchange. Finally, RMS sends a TS and RMD responds with a TSR.
1.9 Sequence carry-over and independence

This covers R0220. In this scenario we verify that a RM node does not assume that termination of one sequence implicitly terminates any other sequence.
Message Exchange Pattern
1. Client-side RMS sends CS+Offer to service-side RMD. Service-side responds with a CSR and accepts the offered sequence.
2. The client reliably sends a request using the original sequence; the request message contains a AckRequested header to ensure that the acknowledgements occur before a response is sent.. The service-side RMD successfully sends acknowledgement for the request received to the client-side RMS.
3. The nature of the request is such that the application/service takes at least 60 seconds to respond. During that time, the client-side RMS shuts down the original sequence; that is, the client-side RMS sends CloseSequence followed by a TerminateSequence to service-side RMD. The service-side RMD responds with CloseSequenceResponse followed by a TerminateSequenceResponse to the client side RMS ending the original sequence.
4. After 60 seconds (or the set delay in the request processing) elapses, the service reliably sends a response using the offered sequence. The client-side RMD successfully sends an acknowledgement for the response to the service-side RMS.
5. The service-side RMS shuts down the offered sequence.
1.10 Dropping of lifecycle messages

In this scenario RM Lifecycle Messages are dropped and the sender is expected to resend them. Aside from the choice of which message to drop, there is the variant of the request message vs the response message being dropped and what the receiver will do upon receipt of a resent request message.

Message Exchange Pattern
Variant 1 - RMS sends a CreateSequence that is lost before the RMD receives it. The RMS resends it at some point later. The RMD responds with a CreateSequenceResponse.

Variant 2 - RMS sends a CreateSequence, the CreateSequenceResponse is lost. RMS resends the CreateSequence and the RMD responds with a CreateSequenceResponse.

Variant 3 - RMS sends a CreateSequence, RMD responds with a CreateSequenceResponse. Some number of application messages is sent. The RMS sends a CloseSequence that is lost before the RMD receives it. The RMS resends the CloseSequence and the RMD responds with a CloseSequenceResponse.

Variant 4 - RMS sends a CreateSequence, RMD responds with a CreateSequenceResponse. Some number of application messages is sent. The RMS sends a CloseSequence and the CloseSequenceResponse is lost. The RMS resends the CloseSequence and the RMD responds with a CloseSequenceResponse.

Variant 5 - RMS sends a CreateSequence, RMD responds with a CreateSequenceResponse. Some number of application messages is sent. The RMS sends a TerminateSequence that is lost before the RMD receives it. The RMS resends the TerminateSequence and the RMD responds with a TerminateSequenceResponse.

Variant 6 - RMS sends a CreateSequence, RMD responds with a CreateSequenceResponse. Some number of application messages is sent. The RMS sends a TerminateSequence and the TerminateSequenceResponse is lost. The RMS resends the TerminateSequence and the RMD responds with an "Unknown Sequence Fault".
1.11 Reliable_One_Way_Requests_Anon_AcksTo_Multiple_Sequences

This tests RSP requirement R0501. The client creates two sequences to the service in the identical way; the AcksTo in the CreateSequence message is set to WS-Addressing anonymous URI and there is no Offer. The service supports a one-way message. The client reliably sends a number of messages to the service, alternating the sequence for each message. All acknowledgements must be received on the HTTP back channel.
1.12 Reliable_Request_Response_AcksTo_RefParm

This tests RSP requirement R0510. The client creates a sequence to the service with a CreateSequence message that contains a non-anonymous AcksTo with ReferenceParameters. The CreateSequence may or may not contain an Offer. The service supports reliable requests and either reliable or non-reliable responses. The client reliably sends a number of messages to the service. The /wsa:ReplyTo/wsa:Address for all these request should be identical to the /wsrm:CreateSequence/wsrm:AcksTo/wsa:Address but the /wsa:ReplyTo/wsa:ReferenceParameters should alternate between a set that is identical to /wsrm:CreateSequence/wsrm:AcksTo/wsa:ReferenceParameters and a set that is different.
By simulating a situation where the ref parameters in the ReplyTo and AckTo EPRs alternate between being identical to different, this scenario tries to verify this:
· If the RMD is NOT capable of comparing the reference params in the ReplyTo and AcksTo EPRs, then the SequenceAcknowledgement headers must not be piggybacked.

· If the RMD is capable of comparing the reference params in the ReplyTo and AcksTo EPRs, then the SequenceAcknowledgement header MAY be piggybacked ONLY on messages sent to the AcksTo EPR that contains the correct reference parameters (same as the reference parameters in the AckTo EPR sent in the CreateSequence message).

Note: An implementation must implement the service side behavior described in this scenario, but the client side behavior described in this scenario is optional.
1.13 Reliable_Request_Empty_Response

This tests RSP requirement R0530. The trick to testing this requirement is to define a response operation with an empty body and a non-empty wsa:Action header and create a situation in which this response is likely to carry a piggybacked acknowledgement.

Create a WSDL with a portType that defines a single request-response operation. The wsdl:output of this operation should have an empty message and a non-empty wsam:Action attribute. A client implementation of this WSDL reliably sends the request messages and reliably receives the response messages. Use RspEmpty.xsd, RspEmpty.wsdl, and RspEmpty0.wsdl in the appendix sections for this scenario.
If the SequenceAcknowledgement or AckRequested header is piggybacked on the response message, then the wsa:Action URI of the response message must be the same as that defined in the WSDL for the response message.
1.14 WS-MakeConnection faults

This covers R2050, R2102, and R2103.
· The client sends a WS-MakeConnection message that does not contain wsmc:Address child element in it. The receiver generates a wsmc:MissingSelection fault; this fault, if transmitted, must adhere to section 3.4 of WS-Addressing specification.

· The client sends a WS-MakeConnection message that contains a wsmc:Identifier child element in it. The receiver generates a wsmc:UnsupportedSelection fault; this fault, if transmitted, must adhere to section 3.4 of WS-Addressing specification.
2 Appendix – WSDL operations
Notify

A one-way operation with the following outline:
Request:
[Action] http://example.com/rsp/Notify
[Body]
<rsp:Notify>
 <rsp:ID> myID </rsp:ID>
 <rsp:text> Hello World <rsp:text>
</rsp:Notify>
Has two pieces of data:
· ID: a string representing a unique identifier used to associate a series of Notify and Echo messages.
· text: a string of the client's choosing.
All calls to Notify and Echo will concatenate the 'text' values for matching IDs.
An empty string or "fault" for the 'text' parameter must cause the service to generate a fault.
Echo
A two-way operation with the following outline:
Request:
[Action] http://example.com/rsp/Echo
[Body]
<rsp:Echo>
 <rsp:ID> myID <rsp:ID>
 <rsp:text> Hello World <rsp:text>
</rsp:Echo>
Response:
[Action] http://example.com/rsp/EchoResponse
[Body]
<rsp:EchoResponse>
 <rsp:text> Hello World <rsp:text>
</rsp:EchoResponse>

Has two pieces of data:
· ID: a string representing a unique identifier used to associate a series of Notify and Echo messages.
· text: a string of the client's choosing.
· All calls to Notify and Echo will concatenate the 'text' values for matching ID's.

An empty string or "fault" for the 'text' parameter must cause the service to generate a fault.
Note: leading and trailing spaces in the 'text' parameter will be ignored.
3 Appendix – Test WSDL
<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions targetNamespace="http://example.com/rsp"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata"

 xmlns:tns="http://example.com/rsp">

 <wsdl:types>

 <xs:schema targetNamespace="http://example.com/rsp">

 <xs:include schemaLocation="rsp.xsd"/>

 <xs:element name="Notify" type="tns:NotifyType"/>

 <xs:element name="Echo" type="tns:EchoType"/>

 <xs:element name="EchoResponse" type="tns:EchoResponseType"/>

 <xs:element name="EchoFault" type="tns:EchoFault" nillable="true"/>

 </xs:schema>

 </wsdl:types>

 <wsdl:message name="Notify">

 <wsdl:part name="Notify" element="tns:Notify"/>

 </wsdl:message>

 <wsdl:message name="Echo">

 <wsdl:part name="Echo" element="tns:Echo"/>

 </wsdl:message>

 <wsdl:message name="EchoFault">

 <wsdl:part name="detail" element="tns:EchoFault"/>

 </wsdl:message>

 <wsdl:message name="EchoResponse">

 <wsdl:part name="EchoResponse" element="tns:EchoResponse"/>

 </wsdl:message>

 <wsdl:portType name="RspPort">

 <wsdl:operation name="Notify">

 <wsdl:input message="tns:Notify"

wsam:Action="http://example.com/rsp/Notify" />

 </wsdl:operation>

 <wsdl:operation name="Echo">

 <wsdl:input message="tns:Echo"

wsam:Action="http://example.com/rsp/Echo" />

 <wsdl:output message="tns:EchoResponse"

wsam:Action="http://example.com/rsp/EchoResponse" />

 <wsdl:fault name="EchoFault" wsam:Action="http://example.com/rsp/EchoFault" message="tns:EchoFault" />

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="RspSOAP11Binding" type="tns:RspPort">

 <soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="Notify">

 <soap:operation soapAction=""/>

 <wsdl:input>

 <soap:body use="literal" parts="Notify"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="Echo">

 <soap:operation soapAction=""/>

 <wsdl:input>

 <soap:body use="literal" parts="Echo"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 <wsdl:fault name="EchoFault">

 <soap:fault use="literal" name="EchoFault" />

 </wsdl:fault>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:binding name="RspSOAP12Binding" type="tns:RspPort">

 <soap12:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="Notify">

 <soap12:operation/>

 <wsdl:input>

 <soap12:body use="literal" parts="Notify"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="Echo">

 <soap12:operation/>

 <wsdl:input>

 <soap12:body use="literal" parts="Echo"/>

 </wsdl:input>

 <wsdl:output>

 <soap12:body use="literal"/>

 </wsdl:output>

 <wsdl:fault name="EchoFault">

 <soap12:fault use="literal" name="EchoFault" />

 </wsdl:fault>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="RspService">

 <wsdl:port name="Soap11port" binding="tns:RspSOAP11Binding">

 <soap:address location="http://example.com/rsp/rspSOAP11"/>

 </wsdl:port>

 </wsdl:service>

 <wsdl:service name="RspService12">

 <wsdl:port name="Soap12port" binding="tns:RspSOAP12Binding">

 <soap12:address location="http://example.com/rsp/rspSOAP12"/>

 </wsdl:port>

 </wsdl:service>

</wsdl:definitions>

4 Appendix – XSD

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://example.com/rsp"

 xmlns:tns="http://example.com/rsp"

 elementFormDefault="qualified">

 <xs:complexType name="NotifyType">

 <xs:sequence>

 <xs:element name="ID" type="xs:string" />

 <xs:element name="text" type="xs:string" />

 <xs:any namespace="##other" processContents="lax" minOccurs="0"

 maxOccurs="unbounded" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="EchoType">

 <xs:sequence>

 <xs:element name="ID" type="xs:string" />

 <xs:element name="text" type="xs:string" />

 <xs:any namespace="##other" processContents="lax" minOccurs="0"

 maxOccurs="unbounded" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="EchoResponseType">

 <xs:sequence>

 <xs:element name="text" type="xs:string" />

 <xs:any namespace="##other" processContents="lax" minOccurs="0"

 maxOccurs="unbounded" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="EchoFault">

 <xs:sequence>

 <xs:element name="text" type="xs:string" nillable="true" minOccurs="0" />

 </xs:sequence>

 </xs:complexType>

</xs:schema>
5 Appendix – Test WSDL (RspEmpty.wsdl) for scenario 1.13

<?xml version="1.0" encoding="utf-8"?>

<wsdl:definitions name="EmptyEchoService" targetNamespace="http://tempuri.org/" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/" xmlns:tns="http://tempuri.org/" xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" xmlns:wsp="http://www.w3.org/ns/ws-policy" xmlns:i0="http://example.com/rsp" xmlns:wsap="http://schemas.xmlsoap.org/ws/2004/08/addressing/policy" xmlns:wsa10="http://www.w3.org/2005/08/addressing" xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata">

 <wsp:Policy wsu:Id="CustomBinding_IEmptyEcho_policy">

 <wsp:ExactlyOne>

 <wsp:All>

 <wsrmp:RMAssertion xmlns:wsrmp="http://docs.oasis-open.org/ws-rx/wsrmp/200702">

 <wsp:Policy>

 <wsrmp:DeliveryAssurance>

 <wsp:Policy>

 <wsrmp:ExactlyOnce/>

 <wsrmp:InOrder/>

 </wsp:Policy>

 </wsrmp:DeliveryAssurance>

 </wsp:Policy>

 </wsrmp:RMAssertion>

 <wsam:Addressing>

 <wsp:Policy />

 </wsam:Addressing>

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

 <wsdl:import namespace="http://example.com/rsp" location="RspEmpty0.wsdl"/>

 <wsdl:types/>

 <wsdl:binding name="CustomBinding_IEmptyEcho" type="i0:IEmptyEcho">

 <wsp:PolicyReference URI="#CustomBinding_IEmptyEcho_policy"/>

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="EmptyEcho">

 <soap:operation soapAction="http://example.com/rsp/EmptyEcho" style="document"/>

 <wsdl:input name="EmptyEchoInput">

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="EmptyBodyMessage">

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="EmptyEchoService">

 <wsdl:port name="CustomBinding_IEmptyEcho" binding="tns:CustomBinding_IEmptyEcho">

 <soap:address location="http://example.com/Reliable_Addressable_BP12"/>

 <wsa10:EndpointReference>

 <wsa10:Address>http://example.com/Reliable_Addressable_BP12</wsa10:Address>

 </wsa10:EndpointReference>

 </wsdl:port>

 </wsdl:service>

</wsdl:definitions>
6 Appendix – Test WSDL (RspEmpty0.wsdl) for scenario 1.13

<?xml version="1.0" encoding="utf-8"?>

<wsdl:definitions targetNamespace="http://example.com/rsp" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/" xmlns:tns="http://example.com/rsp" xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" xmlns:wsp="http://www.w3.org/ns/ws-policy" xmlns:wsap="http://schemas.xmlsoap.org/ws/2004/08/addressing/policy" xmlns:wsa10="http://www.w3.org/2005/08/addressing" xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata">

 <wsdl:types>

 <xsd:schema targetNamespace="http://example.com/rsp/Imports">

 <xsd:import schemaLocation="RspEmpty1.xsd" namespace="http://example.com/rsp"/>

 </xsd:schema>

 </wsdl:types>

 <wsdl:message name="EmptyEchoInput">

 <wsdl:part name="parameters" element="tns:EmptyEchoInput"/>

 </wsdl:message>

 <wsdl:message name="EmptyBodyMessage"/>

 <wsdl:portType name="IEmptyEcho">

 <wsdl:operation name="EmptyEcho">

 <wsdl:input wsam:Action="http://example.com/rsp/EmptyEcho" name="EmptyEchoInput" message="tns:EmptyEchoInput"/>

 <wsdl:output wsam:Action="http://example.com/rsp/EmptyEchoResponse" name="EmptyBodyMessage" message="tns:EmptyBodyMessage"/>

 </wsdl:operation>

 </wsdl:portType>

</wsdl:definitions>
7 Appendix – Test XSD (RspEmpty.xsd) for scenario 1.13

<?xml version="1.0" encoding="utf-8"?>

<xs:schema elementFormDefault="qualified" targetNamespace="http://example.com/rsp" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:tns="http://example.com/rsp">

 <xs:element name="EmptyEchoInput">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="0" name="Id" type="xs:string" />

 <xs:element minOccurs="0" name="text" type="xs:string" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>
8 Appendix - Security configuration information

This section talks about WS-SC bootstrap and outer policy details.
8.1 Bootstrap

	Token
	X509 certificate

	Binding
	Asymmetric Binding

	Algorithm Suite
	Basic128Rsa15

	Signed Parts
	WS-Addressing Headers: To, From, FaultTo, ReplyTo, MessageID, RelatesTo, Action and all the reference parameter in the soap response message

	Encrypted Parts
	Body

	Other
	· Strict layout
· Include timestamp

· Only sign entire headers and body

· Must support issued tokens

· Must SupportRefThumbprint

· Must SupportRefKeyIdentifier

· Require client and server entropy

The WS-SC bootstrap policy is same in both the security configurations. The bootstrap policy encrypts the body and sign all the important soap headers including all WS-A headers.

8.2 Outer policy

There are two security configurations in the outer policy. The WS-SC outer policy is targeted in the wsdl binding so that the outer policy applies to both the protocol and application messages. Please note that RM or MC policy is also targeted on the WSDL binding.

8.2.1 Sign-Only Security Configuration

This configuration is used when the messages are captured for analysis. The application messages are not encrypted and only just signed to trigger more test assertions so that we will get more requiments coverage by the scenarios.

	Token
	Secure conversation

	Binding
	Symmetric Binding

	Algorithm Suite
	Basic128Rsa15

	Signed Parts
	· Addressing Headers
· To, From, FaultTo, ReplyTo, MessageID, RelatesTo, Action

· Reliable Messaging Headers

· Sequence, SequenceAcknowledgement, AckRequested, UsesSequenceSTR, SequenceFault

· Reliable Messaging with no Make Connection

· MessagePending

· WSA-Reference Parameters

	Encrypted Parts
	None

	Other
	· Strict layout
· Include timestamp

· Only sign entire headers and body

· Require Derived Keys

8.2.2 Sign-and-encrypt configuration

This configuration is used to smoke test services with different vendor’s clients. Consumers or RSP services would like to generally use sign-and-encrypt security configuration.

	Token
	Secure conversation

	Binding
	SymmetricBinding

	Algorithm Suite
	Basic128Rsa15

	Signed Parts
	· Addressing Headers
· To, From, FaultTo, ReplyTo, MessageID, RelatesTo, Action

· Reliable Messaging Headers

· Sequence, SequenceAcknowledgement, AckRequested, UsesSequenceSTR, SequenceFault

· Reliable Messaging with no Make Connection

· MessagePending

· WSA-Reference Parameters

	Encrypted Parts
	Soap Body

	Other
	· Strict layout
· Include timestamp

· Only sign entire headers and body

· Require Derived Keys

8.3 Certificate Configuration

The certificates and keys used are packaged in the scenario package.

8.3.1 Client

The client possesses the private key for Alice and uses it to sign messages. The client uses the public key of the Bob certificate to encrypt messages. The client also trusts the server’s public certificate identified by Bob. The same certificate is used to verify server’s signature

8.3.2 Server

The client possesses the private key for Bob and uses it to sign messages. The client uses the public key of the Alice certificate to encrypt messages. The server also trusts the client’s public certificate identified by Alice. The same certificate is used to verify client’s signature.

8.4 Scenario Policies

8.4.1 Example – Security policy for sign-only configuration

<?xml version="1.0" encoding="utf-8"?>
<wsdl:definitions xmlns:wsap="http://schemas.xmlsoap.org/ws/2004/08/addressing/policy" xmlns:wsa10="http://www.w3.org/2005/08/addressing" xmlns:tns="http://tempuri.org/" xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" xmlns:wsx="http://schemas.xmlsoap.org/ws/2004/09/mex" xmlns:wsp="http://www.w3.org/ns/ws-policy" xmlns:i0="http://example.com/rsp" xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata" xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/" xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" xmlns:wsaw="http://www.w3.org/2006/05/addressing/wsdl" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd" xmlns:xsd="http://www.w3.org/2001/XMLSchema" name="EchoServiceSignOnly" targetNamespace="http://tempuri.org/" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 ...

 <Policy Id="RM_SEC_SGIN_AND_ENCRYPT">
 <ExactlyOne>
 <All>
 <RMAssertion/>
 <sp:SymmetricBinding xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">
 <wsp15:Policy xmlns:wsp15="http://www.w3.org/ns/ws-policy">
 <sp:ProtectionToken>
 <wsp15:Policy>
 <sp:SecureConversationToken sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/AlwaysToRecipient">
 <wsp15:Policy>
 <sp:RequireDerivedKeys/>
 <sp:BootstrapPolicy>
 <wsp15:Policy>
 <sp:SignedParts>
 <sp:Body/>
 <sp:Header Name="ChannelInstance"

 Namespace="http://schemas.microsoft.com/ws/2005/02/duplex"/>
 <sp:Header Name="To"

 Namespace="http://www.w3.org/2005/08/addressing"/>
 <sp:Header Name="From"

 Namespace="http://www.w3.org/2005/08/addressing"/>
 <sp:Header Name="FaultTo"

 Namespace="http://www.w3.org/2005/08/addressing"/>
 <sp:Header Name="ReplyTo"

 Namespace="http://www.w3.org/2005/08/addressing"/>
 <sp:Header Name="MessageID"

 Namespace="http://www.w3.org/2005/08/addressing"/>
 <sp:Header Name="RelatesTo"

 Namespace="http://www.w3.org/2005/08/addressing"/>
 <sp:Header Name="Action"

 Namespace="http://www.w3.org/2005/08/addressing"/>
 </sp:SignedParts>
 <sp:EncryptedParts>
 <sp:Body/>
 </sp:EncryptedParts>
 <sp:AsymmetricBinding>
 <wsp15:Policy>
 <sp:InitiatorToken>
 <wsp15:Policy>
 <sp:X509Token sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/AlwaysToRecipient">
 <wsp15:Policy>
 <sp:WssX509V3Token10/>
 </wsp15:Policy>
 </sp:X509Token>
 </wsp15:Policy>
 </sp:InitiatorToken>
 <sp:RecipientToken>
 <wsp15:Policy>
 <sp:X509Token sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/AlwaysToInitiator">
 <wsp15:Policy>
 <sp:WssX509V3Token10/>
 </wsp15:Policy>
 </sp:X509Token>
 </wsp15:Policy>
 </sp:RecipientToken>
 <sp:AlgorithmSuite>
 <wsp15:Policy>
 <sp:Basic128Rsa15/>
 </wsp15:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp15:Policy>
 <sp:Strict/>
 </wsp15:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:OnlySignEntireHeadersAndBody/>
 </wsp15:Policy>
 </sp:AsymmetricBinding>
 <sp:Wss11>
 <wsp15:Policy>
 <sp:MustSupportRefThumbprint/>
 <sp:MustSupportRefKeyIdentifier/>
 </wsp15:Policy>
 </sp:Wss11>
 <sp:Trust13>
 <wsp15:Policy>
 <sp:MustSupportIssuedTokens/>
 <sp:RequireClientEntropy/>
 <sp:RequireServerEntropy/>
 </wsp15:Policy>
 </sp:Trust13>
 </wsp15:Policy>
 </sp:BootstrapPolicy>
 </wsp15:Policy>
 </sp:SecureConversationToken>
 </wsp15:Policy>
 </sp:ProtectionToken>
 <sp:AlgorithmSuite>
 <wsp15:Policy>
 <sp:Basic128Rsa15/>
 </wsp15:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp15:Policy>
 <sp:Strict/>
 </wsp15:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:OnlySignEntireHeadersAndBody/>
 </wsp15:Policy>
 </sp:SymmetricBinding>
 <wsp:Policy xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata"

 xmlns:wsp="http://www.w3.org/ns/ws-policy"

 xmlns:wsu="http://docs.oasisopen.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">
 <sp:Body/>
 <sp:Header Name="ChannelInstance"

 Namespace="http://schemas.microsoft.com/ws/2005/02/duplex"/>
 <sp:Header Name="Sequence"

 Namespace="http://docs.oasis-open.org/ws-rx/wsrm/200702"/>
 <sp:Header Name="SequenceAcknowledgement"

 Namespace="http://docs.oasis-open.org/ws-rx/wsrm/200702"/>
 <sp:Header Name="SequenceFault"

 Namespace="http://docs.oasis-open.org/ws-rx/wsrm/200702"/>
 <sp:Header Name="AckRequested"

 Namespace="http://docs.oasis-open.org/ws-rx/wsrm/200702"/>
 <sp:Header Name="UsesSequenceSTR"

 Namespace="http://docs.oasis-open.org/ws-rx/wsrm/200702"/>
 <sp:Header Name="MessagePending"

 Namespace="http://docs.oasis-open.org/ws-rx/wsrm/200702"/>
 <sp:Header Name="To"

 Namespace="http://www.w3.org/2005/08/addressing"/>
 <sp:Header Name="From"

 Namespace="http://www.w3.org/2005/08/addressing"/>
 <sp:Header Name="FaultTo"

 Namespace="http://www.w3.org/2005/08/addressing"/>
 <sp:Header Name="ReplyTo"

 Namespace="http://www.w3.org/2005/08/addressing"/>
 <sp:Header Name="MessageID"

 Namespace="http://www.w3.org/2005/08/addressing"/>
 <sp:Header Name="RelatesTo"

 Namespace="http://www.w3.org/2005/08/addressing"/>
 <sp:Header Name="Action"

 Namespace="http://www.w3.org/2005/08/addressing"/>
 </sp:SignedParts>
 </wsp:All>
 </wsp:ExactlyOne>
 </wsp:Policy>
 <sp:Wss11 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">
 <wsp15:Policy xmlns:wsp15="http://www.w3.org/ns/ws-policy"/>
 </sp:Wss11>
 <sp:Trust13 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">
 <wsp15:Policy xmlns:wsp15="http://www.w3.org/ns/ws-policy">
 <sp:MustSupportIssuedTokens/>
 <sp:RequireClientEntropy/>
 <sp:RequireServerEntropy/>
 </wsp15:Policy>
 </sp:Trust13>
 <wsam:Addressing xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata">
 <wsp:Policy xmlns:wsp="http://www.w3.org/ns/ws-policy">
 <wsam:NonAnonymousResponses/>
 </wsp:Policy>
 </wsam:Addressing>
 </All>
 </ExactlyOne>
 </Policy>
 ...

</wsdl:definitions>

8.4.2 Example – Security policy for sign-and-encrypt configuration

<?xml version="1.0" encoding="utf-8"?>

<?xml version="1.0" encoding="utf-8"?>
<wsdl:definitions xmlns:wsap="http://schemas.xmlsoap.org/ws/2004/08/addressing/policy" xmlns:wsa10="http://www.w3.org/2005/08/addressing" xmlns:tns="http://tempuri.org/" xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" xmlns:wsx="http://schemas.xmlsoap.org/ws/2004/09/mex" xmlns:wsp="http://www.w3.org/ns/ws-policy" xmlns:i0="http://example.com/rsp" xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata" xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/" xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" xmlns:wsaw="http://www.w3.org/2006/05/addressing/wsdl" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd" xmlns:xsd="http://www.w3.org/2001/XMLSchema" name="EchoService" targetNamespace="http://tempuri.org/" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 ...

 <Policy Id="RM_SEC_SGIN_ONLY">
 <ExactlyOne>
 <All>
 <RMAssertion/>
 <sp:SymmetricBinding xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">
 <wsp15:Policy xmlns:wsp15="http://www.w3.org/ns/ws-policy">
 <sp:ProtectionToken>
 <wsp15:Policy>
 <sp:SecureConversationToken sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/AlwaysToRecipient">
 <wsp15:Policy>
 <sp:RequireDerivedKeys/>
 <sp:BootstrapPolicy>
 <wsp15:Policy>
 <sp:SignedParts>
 <sp:Body/>
 <sp:Header Name="ChannelInstance"

 Namespace="http://schemas.microsoft.com/ws/2005/02/duplex"/>
 <sp:Header Name="To"

 Namespace="http://www.w3.org/2005/08/addressing"/>
 <sp:Header Name="From"

 Namespace="http://www.w3.org/2005/08/addressing"/>
 <sp:Header Name="FaultTo"

 Namespace="http://www.w3.org/2005/08/addressing"/>
 <sp:Header Name="ReplyTo"

 Namespace="http://www.w3.org/2005/08/addressing"/>
 <sp:Header Name="MessageID"

 Namespace="http://www.w3.org/2005/08/addressing"/>
 <sp:Header Name="RelatesTo"

 Namespace="http://www.w3.org/2005/08/addressing"/>
 <sp:Header Name="Action"

 Namespace="http://www.w3.org/2005/08/addressing"/>
 </sp:SignedParts>
 <sp:EncryptedParts>
 <sp:Body/>
 </sp:EncryptedParts>
 <sp:AsymmetricBinding>
 <wsp15:Policy>
 <sp:InitiatorToken>
 <wsp15:Policy>
 <sp:X509Token sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/AlwaysToRecipient">
 <wsp15:Policy>
 <sp:WssX509V3Token10/>
 </wsp15:Policy>
 </sp:X509Token>
 </wsp15:Policy>
 </sp:InitiatorToken>
 <sp:RecipientToken>
 <wsp15:Policy>
 <sp:X509Token sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/AlwaysToInitiator">
 <wsp15:Policy>
 <sp:WssX509V3Token10/>
 </wsp15:Policy>
 </sp:X509Token>
 </wsp15:Policy>
 </sp:RecipientToken>
 <sp:AlgorithmSuite>
 <wsp15:Policy>
 <sp:Basic128Rsa15/>
 </wsp15:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp15:Policy>
 <sp:Strict/>
 </wsp15:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:OnlySignEntireHeadersAndBody/>
 </wsp15:Policy>
 </sp:AsymmetricBinding>
 <sp:Wss11>
 <wsp15:Policy>
 <sp:MustSupportRefThumbprint/>
 <sp:MustSupportRefKeyIdentifier/>
 </wsp15:Policy>
 </sp:Wss11>
 <sp:Trust13>
 <wsp15:Policy>
 <sp:MustSupportIssuedTokens/>
 <sp:RequireClientEntropy/>
 <sp:RequireServerEntropy/>
 </wsp15:Policy>
 </sp:Trust13>
 </wsp15:Policy>
 </sp:BootstrapPolicy>
 </wsp15:Policy>
 </sp:SecureConversationToken>
 </wsp15:Policy>
 </sp:ProtectionToken>
 <sp:AlgorithmSuite>
 <wsp15:Policy>
 <sp:Basic128Rsa15/>
 </wsp15:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp15:Policy>
 <sp:Strict/>
 </wsp15:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:OnlySignEntireHeadersAndBody/>
 </wsp15:Policy>
 </sp:SymmetricBinding>
 <!--
 Encrypting body is enabled.

 -->
 <sp:EncryptedParts xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">
 <sp:Body/>
 </sp:EncryptedParts>
 <wsp:Policy xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata"

 xmlns:wsp="http://www.w3.org/ns/ws-policy"

 xmlns:wsu="http://docs.oasisopen.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">
 <sp:Body/>
 <sp:Header Name="ChannelInstance"

 Namespace="http://schemas.microsoft.com/ws/2005/02/duplex"/>
 <sp:Header Name="Sequence"

 Namespace="http://docs.oasis-open.org/ws-rx/wsrm/200702"/>
 <sp:Header Name="SequenceAcknowledgement"

 Namespace="http://docs.oasis-open.org/ws-rx/wsrm/200702"/>
 <sp:Header Name="SequenceFault"

 Namespace="http://docs.oasis-open.org/ws-rx/wsrm/200702"/>
 <sp:Header Name="AckRequested"

 Namespace="http://docs.oasis-open.org/ws-rx/wsrm/200702"/>
 <sp:Header Name="UsesSequenceSTR"

 Namespace="http://docs.oasis-open.org/ws-rx/wsrm/200702"/>
 <sp:Header Name="MessagePending"

 Namespace="http://docs.oasis-open.org/ws-rx/wsrm/200702"/>
 <sp:Header Name="To"

 Namespace="http://www.w3.org/2005/08/addressing"/>
 <sp:Header Name="From"

 Namespace="http://www.w3.org/2005/08/addressing"/>
 <sp:Header Name="FaultTo"

 Namespace="http://www.w3.org/2005/08/addressing"/>
 <sp:Header Name="ReplyTo"

 Namespace="http://www.w3.org/2005/08/addressing"/>
 <sp:Header Name="MessageID"

 Namespace="http://www.w3.org/2005/08/addressing"/>
 <sp:Header Name="RelatesTo"

 Namespace="http://www.w3.org/2005/08/addressing"/>
 <sp:Header Name="Action"

 Namespace="http://www.w3.org/2005/08/addressing"/>
 </sp:SignedParts>
 </wsp:All>
 </wsp:ExactlyOne>
 </wsp:Policy>
 <sp:Wss11 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">
 <wsp15:Policy xmlns:wsp15="http://www.w3.org/ns/ws-policy"/>
 </sp:Wss11>
 <sp:Trust13 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">
 <wsp15:Policy xmlns:wsp15="http://www.w3.org/ns/ws-policy">
 <sp:MustSupportIssuedTokens/>
 <sp:RequireClientEntropy/>
 <sp:RequireServerEntropy/>
 </wsp15:Policy>
 </sp:Trust13>
 <wsam:Addressing xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata">
 <wsp:Policy xmlns:wsp="http://www.w3.org/ns/ws-policy">
 <wsam:NonAnonymousResponses/>
 </wsp:Policy>
 </wsam:Addressing>
 </All>
 </ExactlyOne>
 </Policy>
 ...

</wsdl:definitions>
9 Acknowledgements

In addition to members of the RSP WG, the following experts have contributed to the development and submission of the test scenarios:

James Osborne, Microsoft
10 Revision History

	Date
	Revisions
	Comments

	28 August 2008
	Contributed documents provided in WS-I RSP WG F2F meeting in Sunnyvale, CA.
	

	19 September 2008
	Document revised into WS-I format and included WG F2F comments.
	Revisions integrated.

	26 September 2008
	Added new scenarios.
	

	05 October 2008
	Updated scenarios descriptions.
	

	06 October 2008
	Updated WSDL and XSD files.
	

	10 October 2008
	Added additional scenarios relating to requirements R0501, R0510, R0530.
	

	27 October 2008
	Updated description of scenario 1.12 (reliable request response AckTo RefParam) to indicate that the client-side behavior is optional for implementations.
	

	24 November 2008
	Updated document status to “Working Group Draft”.

Updated WSDL.
	

	March 11 2009
	Included WSDL and XSD for scenarios 1.13.
	

	June 16, 2009
	Additions to the introductory section / opening paragraph.

Updates to scenario 1.9.

Minor editorial corrections.
	

	July 10, 2009
	Editorial clarifications relating to secure environment (scenarios 1.3.3, 1.3.4, 1.4.2).

Updated Test WSDL and XSD files in appendix.
	

	July 17, 2009
	Updated the WSDL and XSD files for scenarios 1.13 located in the appendices.
	

	August 17, 2009
	Added success criteria and relevant RSP profile requirements for scenarios 1.11, 1.12, and 1.13.
	

	December 29, 2009
	Added MC fault scenario 1.14.

Updates to scenario 1.4.1, 1.9, 1.10, and 1.11.

Fixed typos in descriptions.
	

	March 15, 2010
	Added expanded sub-scenarios for high-level scenarios: 1.1.1, 1.1.2, 1.2.1, 1.2.2, 1.2.3, and 1.2.4.
	

	April 19, 2010
	Clarifications to scenario 1.4.1 and 1.4.2 relating to use of SOAP 1.1 and SOAP 1.2 for testing.
	

	June 4, 2010
	Added appendix section on security configuration information and updated scenarios correspondingly.
	

	July 2, 2010
	Editorial improvements suggested by Gilbert Pilz.
	

	Sep 9, 2010
	Updates to appendix section on security configuration.
	

Copyright 2010

Page 26 of 43
Web Services Interoperability Organization

