

Reliable Secure Profile Version 1.0
Working Group Draft - revision 11

2007-10-25
This version:

http://www.ws-i.org/Profiles/ReliableSecureProfile-1.0-2007-10-
25.html

Latest version:
http://www.ws-i.org/Profiles/ReliableSecureProfile-1.0.html

Editors:
Jacques Durand, Fujitsu
Anish Karmarkar, Oracle
Gilbert Pilz, BEA

Administrative contact:
secretary@ws-i.org

Copyright © 2002-2007 by The Web Services-Interoperability Organization (WS-
I) and Certain of its Members. All Rights Reserved.

Abstract
This document defines the WS-I Reliable Secure Profile 1.0, consisting of a set
of non-proprietary Web services specifications, along with clarifications,
refinements, interpretations and amplifications of those specifications which
promote interoperability

Status of this Document
This document is a Working Group Draft; it has been accepted by the Working
Group as reflecting the current state of discussions. It is a work in progress, and
should not be considered authoritative or final; other documents may supersede
this document.

http://www.ws-i.org/�
http://www.ws-i.org/Profiles/ReliableSecureProfile-1.0-2007-10-25.html
http://www.ws-i.org/Profiles/ReliableSecureProfile-1.0-2007-10-25.html
http://www.ws-i.org/Profiles/ReliableSecureProfile-1.0.html
mailto:secretary@ws-i.org
http://www.ws-i.org/

Notice
The material contained herein is not a license, either expressly or impliedly, to
any intellectual property owned or controlled by any of the authors or developers
of this material or WS-I. The material contained herein is provided on an "AS IS"
basis and to the maximum extent permitted by applicable law, this material is
provided AS IS AND WITH ALL FAULTS, and the authors and developers of this
material and WS-I hereby disclaim all other warranties and conditions, either
express, implied or statutory, including, but not limited to, any (if any) implied
warranties, duties or conditions of merchantability, of fitness for a particular
purpose, of accuracy or completeness of responses, of results, of workmanlike
effort, of lack of viruses, and of lack of negligence. ALSO, THERE IS NO
WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT, QUIET
POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-
INFRINGEMENT WITH REGARD TO THIS MATERIAL.

IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR
WS-I BE LIABLE TO ANY OTHER PARTY FOR THE COST OF PROCURING
SUBSTITUTE GOODS OR SERVICES, LOST PROFITS, LOSS OF USE, LOSS
OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR
SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY,
OR OTHERWISE, ARISING IN ANY WAY OUT OF THIS OR ANY OTHER
AGREEMENT RELATING TO THIS MATERIAL, WHETHER OR NOT SUCH
PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

Feedback
The Web Services-Interoperability Organization (WS-I) would like to receive
input, suggestions and other feedback ("Feedback") on this work from a wide
variety of industry participants to improve its quality over time.

By sending email, or otherwise communicating with WS-I, you (on behalf of
yourself if you are an individual, and your company if you are providing Feedback
on behalf of the company) will be deemed to have granted to WS-I, the members
of WS-I, and other parties that have access to your Feedback, a non-exclusive,
non-transferable, worldwide, perpetual, irrevocable, royalty-free license to use,
disclose, copy, license, modify, sublicense or otherwise distribute and exploit in
any manner whatsoever the Feedback you provide regarding the work. You
acknowledge that you have no expectation of confidentiality with respect to any
Feedback you provide. You represent and warrant that you have rights to provide
this Feedback, and if you are providing Feedback on behalf of a company, you
represent and warrant that you have the rights to provide Feedback on behalf of
your company. You also acknowledge that WS-I is not required to review,
discuss, use, consider or in any way incorporate your Feedback into future
versions of its work. If WS-I does incorporate some or all of your Feedback in a

future version of the work, it may, but is not obligated to include your name (or, if
you are identified as acting on behalf of your company, the name of your
company) on a list of contributors to the work. If the foregoing is not acceptable
to you and any company on whose behalf you are acting, please do not provide
any Feedback.

Feedback on this document should be directed to wsi_rsp_comment@lists.ws-
i.org.

Table of Contents
1. Introduction
1.1. Relationships to Other Profiles
1.2. Guiding Principles
1.3. Notational Conventions
1.4. Profile Identification and Versioning
2. Profile Conformance
2.1. Conformance Requirements
2.2. Conformance Targets
2.3. Conformance Scope
2.4. Claiming Conformance
3. Reliable Messaging
3.1. Use of Extensibility Points
3.1.1. Ignore Unknown Extension Elements
3.2. Retransmission of Messages
3.2.1. Retransmission of Unacknowledged Messages
3.2.2. Retransmission of Sequence Lifecycle Messages
3.2.3. Message Identity
3.3. Sequence Termination
3.3.1. Sequence Termination from the Destination
3.3.2. Synchronizing Sequence Status
3.4. Sequence Faults
3.4.1. Transmission of Sequence Faults
3.5. Piggybacked Acknowledgements
3.5.1. Endpoint Comparison
3.5.2. Treatment of ReferenceParameters in AcksTo EPRs
3.5.3. Preventing Piggybacked Acknowledgements
3.6. Sequence Assignment
3.6.1. Sequence Assignment for Reliable Response Messages
3.7. Sequence Identifiers
3.7.1. Duplicate Identifier in CreateSequenceResponse
4. Secure Conversation
4.1. Fault Codes for Unsupported Context Tokens
4.1.1. Unsupported Key Sizes

mailto:wsi_rsp_comment@lists.ws-i.org
mailto:wsi_rsp_comment@lists.ws-i.org

4.2. Demonstrating Proof of Possession
4.2.1. Amending Contexts
4.2.2. Renewing Contexts
4.2.3. Cancelling Contexts
4.3. Claims Re-Authentication
4.3.1. Re-Authenticating Claims
4.4. Referencing Security Context Tokens
4.4.1. Associating a Security Context
4.4.2. Derived Token References to Security Contexts
4.5. Addressing Headers
4.5.1. Protecting Addressing Headers
5. MakeConnection
5.1. Using MakeConnection
5.1.1. Addressing Variants
5.1.2. MakeConnection Anonymous URI
5.1.3. Use of MessagePending
6. Secure Reliable Messaging
6.1. Initiating a Secure Sequence
6.1.1. Secure Context Identification
6.1.2. Security Token References
6.2. Signature Coverage
6.2.1. Single Signature for Sequence Header and SOAP Body
6.2.2. Signed Elements
6.2.3. Single Signature for SOAP 1.1 Fault and SequenceFault Header
6.3. Secure Use of MakeConnection
6.3.1. Security Context for MakeConnection
6.4. Replay Detection
6.4.1. Unique Timestamp Values
Appendix A: Referenced Specifications
Appendix B: Extensibility Points
Appendix C: Acknowledgements

1. Introduction
This document defines the WS-I Reliable Secure Profile 1.0 (hereafter, "Profile"),
consisting of a set of non-proprietary Web services specifications, along with
clarifications, refinements, interpretations and amplifications of those
specifications which promote interoperability.

Section 1 introduces the Profile, and explains its relationships to other profiles.

Section 2, "Profile Conformance," explains what it means to be conformant to the
Profile.

Each subsequent section addresses a component of the Profile, and consists of
two parts; an overview detailing the component specifications and their

extensibility points, followed by subsections that address individual parts of the
component specifications. Note that there is no relationship between the section
numbers in this document and those in the referenced specifications.

1.1 Relationships to Other Profiles

This Profile is intended to be composed with the WS-I Basic Profile 1.2, WS-I
Basic Profile 2.0, WS-I Basic Security Profile 1.0 and WS-I Basic Security Profile
1.1. Composability of RSP with the previously mentioned profiles offers the
following guarantee to users: conformance of an artifact to RSP does not prevent
conformance of this artifact to these other profiles, and vice-versa.

Because the conformance targets defined for RSP may not match exactly the
conformance targets for another profile, the following more precise definition of
composability is assumed in this profile:

A profile P2 is said to be composable with a profile P1 if, for any
respective pair of conformance targets (T2, T1) where T1 depends on
T2 (see definition below), conformance of an instance of T2 to P2
does not prevent conformance of the related T1 instance(s) to P1,
and vice-versa in case T2 depends on T1.

A target T1 is said to depend on a target T2 if either:

• T2 and T1 are just different names for the same type of artifact (e.g.
ENVELOPE in RSP and SOAP_ENVELOPE in BSP)

• or T2 is a specialization (or particular instance) of T1 (e.g.
SECURE_ENVELOPE in BSP is a specialization of ENVELOPE in
RSP)

• T2 is contained in T1 (e.g. SECURITY_HEADER in BSP is contained
in ENVELOPE in RSP)

• more generally, an instance of T2 will restrict in some way the
possible values - or behaviors - of T1 instances associated with it.

In order to conform to this profile (RSP):

• If SOAP 1.1 is being used, all requirements defined in BP 1.2 must be
complied with.

• If SOAP 1.2 is being used, all requirements defined in BP 2.0 must be
complied with.

1.2 Guiding Principles

The Profile was developed according to a set of principles that, together, form the
philosophy of the Profile, as it relates to bringing about interoperability. This
section documents these guidelines.

No guarantee of interoperability
It is impossible to completely guarantee the interoperability of a
particular service. However, the Profile does address the most
common problems that implementation experience has revealed to
date.

Application semantics
Although communication of application semantics can be facilitated
by the technologies that comprise the Profile, assuring the common
understanding of those semantics is not addressed by it.

Testability
When possible, the Profile makes statements that are testable.
However, such testability is not required. Preferably, testing is
achieved in a non-intrusive manner (e.g., examining artifacts "on the
wire").

Strength of requirements
The Profile makes strong requirements (e.g., MUST, MUST NOT)
wherever feasible; if there are legitimate cases where such a
requirement cannot be met, conditional requirements (e.g., SHOULD,
SHOULD NOT) are used. Optional and conditional requirements
introduce ambiguity and mismatches between implementations.

Restriction vs. relaxation
When amplifying the requirements of referenced specifications, the
Profile may restrict them, but does not relax them (e.g., change a
MUST to a MAY).

Multiple mechanisms
If a referenced specification allows multiple mechanisms to be used
interchangeably, the Profile selects those that are well-understood,
widely implemented and useful. Extraneous or underspecified
mechanisms and extensions introduce complexity and therefore
reduce interoperability.

Future compatibility
When possible, the Profile aligns its requirements with in-progress
revisions to the specifications it references. This aids implementers by
enabling a graceful transition, and assures that WS-I does not 'fork'
from these efforts. When the Profile cannot address an issue in a
specification it references, this information is communicated to the
appropriate body to assure its consideration.

Compatibility with deployed services
Backwards compatibility with deployed Web services is not a goal for
the Profile, but due consideration is given to it; the Profile does not
introduce a change to the requirements of a referenced specification
unless doing so addresses specific interoperability issues.

Focus on interoperability
Although there are potentially a number of inconsistencies and design
flaws in the referenced specifications, the Profile only addresses
those that affect interoperability.

Conformance targets
Where possible, the Profile places requirements on artifacts (e.g.,
WSDL descriptions, SOAP messages) rather than the producing or
consuming software's behaviors or roles. Artifacts are concrete,
making them easier to verify and therefore making conformance
easier to understand and less error-prone.

Lower-layer interoperability
The Profile speaks to interoperability at the application layer; it
assumes that interoperability of lower-layer protocols (e.g., TCP, IP,
Ethernet) is adequate and well-understood. Similarly, statements
about application-layer substrate protocols (e.g., SSL/TLS, HTTP) are
only made when there is an issue affecting Web services specifically;
WS-I does not attempt to assure the interoperability of these protocols
as a whole. This assures that WS-I's expertise in and focus on Web
services standards is used effectively.

1.3 Notational Conventions

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
this document are to be interpreted as described in RFC2119.

Normative statements of requirements in the Profile (i.e., those impacting
conformance, as outlined in "Conformance Requirements") are presented in the
following manner:

RnnnnStatement text here.

where "nnnn" is replaced by a number that is unique among the requirements in
the Profile, thereby forming a unique requirement identifier.

Requirement identifiers can be considered to be namespace qualified, in such a
way as to be compatible with QNames from Namespaces in XML. If there is no
explicit namespace prefix on a requirement's identifier (e.g., "R9999" as opposed
to "bp10:R9999"), it should be interpreted as being in the namespace identified
by the conformance URI of the document section it occurs in. If it is qualified, the
prefix should be interpreted according to the namespace mappings in effect, as
documented below.

Some requirements clarify the referenced specification(s), but do not place
additional constraints upon implementations. For convenience, clarifications are
annotated in the following manner: C

Some requirements are derived from ongoing standardization work on the
referenced specification(s). For convenience, such forward-derived statements
are annotated in the following manner: xxxx, where "xxxx" is an identifier for the

http://www.ietf.org/rfc/rfc2119.txt
http://www.w3.org/TR/REC-xml-names/

specification (e.g., "WSDL20" for WSDL Version 2.0). Note that because such
work was not complete when this document was published, the specification that
the requirement is derived from may change; this information is included only as
a convenience to implementers.

As noted above, some requirements may present compatibility issues (whether
forwards or backwards) with previously published versions of the profile. For
convenience, such requirements are annotated in the following manner: Compat

This specification uses a number of namespace prefixes throughout; their
associated URIs are listed below. Note that the choice of any namespace prefix
is arbitrary and not semantically significant.

• soap11 - "http://schemas.xmlsoap.org/soap/envelope/"
• soap12 - "http://www.w3.org/2003/05/soap-envelope"
• xsi - "http://www.w3.org/2001/XMLSchema-instance"
• xsd - "http://www.w3.org/2001/XMLSchema"
• wsdl - "http://schemas.xmlsoap.org/wsdl/"
• soapbind - "http://schemas.xmlsoap.org/wsdl/soap/"
• wsa - "http://www.w3.org/2005/08/addressing"
• wsrm - "http://docs.oasis-open.org/ws-rx/wsrm/200702"
• wsmc - "http://docs.oasis-open.org/ws-rx/wsmc/200702"
• wssc - "http://docs.oasis-open.org/ws-sx/ws-

secureconversation/200512"

1.4 Profile Identification and Versioning

This document is identified by a name (in this case, Reliable Secure Profile) and
a version number (here, 1.0). Together, they identify a particular profile instance.

Version numbers are composed of a major and minor portion, in the form
"major.minor". They can be used to determine the precedence of a profile
instance; a higher version number (considering both the major and minor
components) indicates that an instance is more recent, and therefore supersedes
earlier instances.

Instances of profiles with the same name (e.g., "Example Profile 1.1" and
"Example Profile 5.0") address interoperability problems in the same general
scope (although some developments may require the exact scope of a profile to
change between instances).

One can also use this information to determine whether two instances of a profile
are backwards-compatible; that is, whether one can assume that conformance to
an earlier profile instance implies conformance to a later one. Profile instances
with the same name and major version number (e.g., "Example Profile 1.0" and
"Example Profile 1.1") MAY be considered compatible. Note that this does not

imply anything about compatibility in the other direction; that is, one cannot
assume that conformance with a later profile instance implies conformance to an
earlier one.

2 Profile Conformance
Conformance to the Profile is defined by adherence to the set of requirements
defined for a specific target, within the scope of the Profile. This section explains
these terms and describes how conformance is defined and used.

2.1 Conformance Requirements

Requirements state the criteria for conformance to the Profile. They typically refer
to an existing specification and embody refinements, amplifications,
interpretations and clarifications to it in order to improve interoperability. All
requirements in the Profile are considered normative, and those in the
specifications it references that are in-scope (see "Conformance Scope") should
likewise be considered normative. When requirements in the Profile and its
referenced specifications contradict each other, the Profile's requirements take
precedence for purposes of Profile conformance.

Requirement levels, using RFC2119 language (e.g., MUST, MAY, SHOULD)
indicate the nature of the requirement and its impact on conformance. Each
requirement is individually identified (e.g., R9999) for convenience.

For example;

R9999 Any WIDGET SHOULD be round in shape.

This requirement is identified by "R9999", applies to the target WIDGET (see
below), and places a conditional requirement upon widgets; i.e., although this
requirement must be met to maintain conformance in most cases, there are
some situations where there may be valid reasons for it not being met (which are
explained in the requirement itself, or in its accompanying text).

Each requirement statement contains exactly one requirement level keyword
(e.g., "MUST") and one conformance target keyword (e.g., "MESSAGE"). The
conformance target keyword appears in bold text (e.g. "MESSAGE"). Other
conformance targets appearing in non-bold text are being used strictly for their
definition and NOT as a conformance target. Additional text may be included to
illuminate a requirement or group of requirements (e.g., rationale and examples);
however, prose surrounding requirement statements must not be considered in
determining conformance.

Definitions of terms in the Profile are considered authoritative for the purposes of
determining conformance.

http://www.ietf.org/rfc/rfc2119.txt

None of the requirements in the Profile, regardless of their conformance level,
should be interpreted as limiting the ability of an otherwise conforming
implementation to apply security countermeasures in response to a real or
perceived threat (e.g., a denial of service attack).

2.2 Conformance Targets

Conformance targets identify what artifacts (e.g., SOAP message, WSDL
description, UDDI registry data) or parties (e.g., SOAP processor, end user)
requirements apply to.

This allows for the definition of conformance in different contexts, to assure
unambiguous interpretation of the applicability of requirements, and to allow
conformance testing of artifacts (e.g., SOAP messages and WSDL descriptions)
and the behavior of various parties to a Web service (e.g., clients and service
instances).

Requirements' conformance targets are physical artifacts wherever possible, to
simplify testing and avoid ambiguity.

The following conformance targets are used in the Profile:

• MESSAGE - protocol elements that transport the ENVELOPE (e.g.,
SOAP/HTTP messages) (from Basic Profile 1.1)

• ENVELOPE - the serialization of the soap:Envelope element and its
content (from Basic Profile 1.1)

• DESCRIPTION - descriptions of types, messages, interfaces and
their concrete protocol and data format bindings, and the network
access points associated with Web services (e.g., WSDL
descriptions) (from Basic Profile 1.0)

• INSTANCE - software that implements a wsdl:port or a
uddi:bindingTemplate (from Basic Profile 1.0)

• CONSUMER - software that invokes an INSTANCE (from Basic
Profile 1.0)

• SENDER - software that generates a message according to the
protocol(s) associated with it (from Basic Profile 1.0)

• RECEIVER - software that consumes a message according to the
protocol(s) associated with it (e.g., SOAP processors) (from Basic
Profile 1.0)

• MC-SENDER - software that generates a message containing an
EPR that uses the wsmc:MakeConnection Anonymous URI, and
generates a MakeConnection message as defined by WS-
MakeConnection 1.0 (from WS-MakeConnection 1.0)

• MC-RECEIVER - software that consumes a MakeConnection
message as defined by WS-MakeConnection 1.0 (from WS-
MakeConnection 1.0)

http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://www.ws-i.org/Profiles/BasicProfile-1.0.html
http://www.ws-i.org/Profiles/BasicProfile-1.0.html
http://www.ws-i.org/Profiles/BasicProfile-1.0.html
http://www.ws-i.org/Profiles/BasicProfile-1.0.html
http://www.ws-i.org/Profiles/BasicProfile-1.0.html
http://www.ws-i.org/Profiles/BasicProfile-1.0.html
http://www.ws-i.org/Profiles/BasicProfile-1.0.html
http://www.ws-i.org/Profiles/BasicProfile-1.0.html
http://www.ws-i.org/Profiles/BasicProfile-1.0.html
http://www.ws-i.org/Profiles/BasicProfile-1.0.html

• RMS - RM Source as defined by WS-ReliableMessaging 1.1
• RMD - RM Destination as defined by WS-ReliableMessaging 1.1

2.3 Conformance Scope

The scope of the Profile delineates the technologies that it addresses; in other
words, the Profile only attempts to improve interoperability within its own scope.
Generally, the Profile's scope is bounded by the specifications referenced by it.

The Profile's scope is further refined by extensibility points. Referenced
specifications often provide extension mechanisms and unspecified or open-
ended configuration parameters; when identified in the Profile as an extensibility
point, such a mechanism or parameter is outside the scope of the Profile, and its
use or non-use is not relevant to conformance.

Note that the Profile may still place requirements on the use of an extensibility
point. Also, specific uses of extensibility points may be further restricted by other
profiles, to improve interoperability when used in conjunction with the Profile.

Because the use of extensibility points may impair interoperability, their use
should be negotiated or documented in some fashion by the parties to a Web
service; for example, this could take the form of an out-of-band agreement.

The Profile's scope is defined by the referenced specifications in Appendix A, as
refined by the extensibility points in Appendix B.

2.4 Claiming Conformance

Claims of conformance to the Profile can be made using the following
mechanisms, as described in Conformance Claim Attachment Mechanisms,
when the applicable Profile requirements associated with the listed targets have
been met:

• WSDL 1.1 Claim Attachment Mechanism for Web Services
Instances - MESSAGE DESCRIPTION INSTANCE RECEIVER RMS
RMD

• WSDL 1.1 Claim Attachment Mechanism for Description
Constructs - DESCRIPTION

• UDDI Claim Attachment Mechanism for Web Services Instances -
MESSAGE DESCRIPTION INSTANCE RECEIVER

• UDDI Claim Attachment Mechanism for Web Services
Registrations - REGDATA

The conformance claim URI for this Profile is "http://ws-i.org/profiles/rsp/1.0".

3. Reliable Messaging

http://www.ws-i.org/Profiles/ConformanceClaims-1.0.html

This section of the Profile incorporates the following specifications by reference:

• Web Services Reliable Messaging (WS-ReliableMessaging) 1.1
• Internationalized Resource Identifiers (IRIs)
• Web Services Addressing 1.0 - SOAP Binding

3.1 Use of Extensibility Points

The protocol elements defined by WS-ReliableMessaging contain extension
points wherein implementations MAY add child elements and/or attributes.

3.1.1 Ignore Unknown Extension Elements
To ensure the ability to safely extend the protocol, it is necessary that adding an
extension does not create the risk of impacting interoperability with non-extended
implementations.

R0001 A RECEIVER MUST ignore any extension
elements and/or attributes that it does not
recognize. Any exceptions to this rule are
clearly identified in requirements below or the
specifications underlying the profile

While the extensibility points of the profiled specifications can be used, per
R0001 they MUST be ignored if they are not understood. However if a SENDER
wishes to ensure that the RECEIVER understands and will comply with any such
extensions, they need to include a SOAP Header, marked with
mustUnderstand="1", in the request message that requires adherence to the
semantics of those extensions.

3.2 Retransmission of Messages

WS-ReliableMessaging protocol requires retransmission of messages. The
Profile places the following restrictions and refinements on such retransmissions:

3.2.1 Retransmission of Unacknowledged Messages
To ensure reliable delivery of messages within a Sequence, it is necessary for
the RMS to retransmit unacknowledged messages and for the RMD to accept
them.

R0101 An RMS MUST continue to retransmit
unacknowledged messages until the Sequence
is closed or terminated.

R0102 An RMD MUST accept unacknowledged
message until the Sequence is closed or
terminated.

3.2.2 Retransmission of Sequence Lifecycle Messages

http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-cs-01.pdf
http://www.ietf.org/rfc/rfc3987.txt
http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509

WS-ReliableMessaging 1.1 Section 2.1 defines the messages that affect the
created/closing/closed/terminating state of a Sequence as "Sequence Lifecycle
Messages". WS-RM 1.1 is silent on what a SENDER (RMS or RMD) is expected
to do when it either fails to send one of the messages or does not receive the
corresponding response message (e.g. an RMS sends a CreateSequence
message but does not receive a CreateSequenceResponse message).

R0110 When a SENDER fails to successfully send a
Sequence Lifecycle Message or it does not
receive the corresponding response message
(if one exists), it is RECOMMENDED that the
SENDER attempt to resend the message. The
frequency and number of these retries are
implementation dependent.

3.2.3 Message Identity
In cases where wsa:MessageID is being used, retransmission must not alter its
value, because other headers (possibly occuring in other messages - such as
wsa:RelatesTo) may rely on it for message correlation.

R0120 For any two ENVELOPES that contain WS-RM
Sequence headers in which the value of their
wsrm:Identifier and wsrm:MessageNumber
elements are equal, it MUST be true that
neither of the envelopes contains a
wsa:MessageID or that both messages contain
a wsa:MessageID and the value of the
wsa:MessageID elements are equal.

3.3 Sequence Termination

Termination of sequences must be done in a way to ensure that both the RMS
and RMD share a common understanding of the final status of the sequence.
The Profile places the following requirements on termination procedures:

3.3.1 Sequence Termination from the Destination
An RMS may need to get a final sequence acknowledgment, for supporting a
particular delivery assurance. This is only possible after the sequence is closed
and before it is terminated. When the termination is decided by the RMD, the
RMS must also be made aware of this closure so that it can request a final
acknowledgement.

R0200 In the case where an RMD decides to
discontinue a sequence, it MUST close the
Sequence and MUST attempt to send a
wsrm:CloseSequence message to the AcksTo
EPR.

3.3.2 Synchronizing Sequence Status

Among other benefits, the use of Sequence Message Numbers makes an RMD
aware of gaps - messages it has not received - in a sequence. For this
awareness to apply also to messages missing at the end of a sequence the RMD
must be aware of the highest message number sent.

R0210 When sending a wsrm:CloseSequence or a
wsrm:TerminateSequence, an RMS MUST
always include a LastMsgNumber element.

3.4 Sequence Faults

This Profile adds the following requirement to the handling of faults that are
generated as the result of processing WS-RM Sequence Lifecycle messages.

3.4.1 Transmission of Sequence Faults
In Section 4, "Faults" WS-ReliableMessaging 1.1 states that a receiver that
generates a fault related to a known sequence SHOULD transmit that fault.
However, the WS-I Basic Profile 1.2 states, in requirement R1029, that, under
certain circumstances, the receiver must transmit the fault. Mapping the specifics
of the BP 1.2 requirement onto the details of the WS-RM 1.1 specification results
in the following requirement:

R0400 If a fault is generated while processing a
wsrm:CreateSequence, wsrm:CloseSequence,
or wsrm:TerminateSequence message, or a
message containing a wsrm:AckRequested
header, the RECEIVER MUST transmit the
fault.

3.5 Piggybacked Acknowledgements

WS-ReliableMessaging 1.1 allows for the addition of some WS-RM-defined
headers to messages that are targeted to the same endpoint to which those
headers are to be sent; a concept it refers to as "piggybacking". There are a
number of interoperability issues with the practice of piggybacking
SequenceAcknowledgment headers.

3.5.1 Endpoint Comparison
Because there is no standard mechanism for comparing EPRs, it is possible for
different implementations to have dissimilar assumptions about which messages
are and are not valid carriers for piggybacked SequenceAcknowledgement
headers. For example, an implementation of the RMS may assume that the
ReferenceParameters (if any) of the EPRs will be compared as part of the
determination of whether a message is targeted to "the same" endpoint as the
AcksTo endpoint. Meanwhile an implementation of the RMD may assume that a
simple comparison of the Address IRIs is sufficient for making this determination.
This creates the possibility for misdirected, dropped, and otherwise lost

acknowledgements to the detriment and possible malfunctioning of the WS-RM
protocol.

R0500 An RMD MUST, at a minimum, perform a simple
string comparison algorithm, as indicated in the
RFC 3987 section 5.3.1, of the respective
wsa:Address IRIs before piggybacking a
SequenceAcknowledgement Header onto
another message.

R0501 In cases where the AcksTo EPR of a Sequence
has an Address value equal to the WS-
Addressing 1.0 Anonymous URI, the RMD
MUST also limit piggybacking as described in
section 3.9 of the WS-ReliableMessaging 1.1
specification.

These requirements establish a minimum baseline for an RMD to correctly
piggyback SequenceAcknowledgement headers. Individual RMD
implementations may choose to consider and/or compare additional elements of
the EndpointReference (e.g. the value of any ReferenceParameters elements).

3.5.2 Treatment of ReferenceParameters in AcksTo EPRs
There exists an interoperability problem for Sequences in which the AcksTo EPR
contains ReferenceParameters. According to the processing rules defined by
Web Services Addressing 1.0 - SOAP Binding, the RMS should expect that any
acknowledgements for the Sequence will be accompanied by the contents of the
wsrm:AcksTo/wsa:ReferenceParameters promoted as headers in the message
carrying that acknowledgement. However, in the case of piggybacked
acknowledgments, the carrier message's [destination] EPR may contain
Reference Parameters that conflict in some way with the
wsrm:AcksTo/ReferenceParameters.

R0502 If the algorithm used by the RMD to determine if
a SequenceAcknowledgment can be
piggybacked onto another message does not
include a comparison of the value of the
ReferenceParameters element (when present),
then the RMD MUST NOT piggyback
SequenceAcknowledgement headers for
Sequences in which the AcksTo EPR contains
ReferenceParameters.

This requirement ensures any RMS implementation that includes
ReferenceParameters in its AckTo EPRs of the following invariant: regardless of
whether or not the acknowledgments for such Sequences are piggybacked, any
message containing the SequenceAcknowledgement header(s) for such
Sequences will also contain the AcksTo/wsa:ReferenceParameters in its SOAP
headers. Note, this requirement applies equally to Sequences for which

http://www.ietf.org/rfc/rfc3987.txt
http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509

AcksTo/wsa:Address is anonymous and Sequence for which
AcksTo/wsa:Address is not anonymous.

3.5.3 Preventing Piggybacked Acknowledgements
In situations where an RMD exercises the opportunity to piggyback most or all of
the wsrm:SequenceAcknowledgement headers for a particular Sequence to an
RMS which does not support the processing of piggybacked acknowledgments, it
is likely that the operation of the WS-RM protocol will be severely impacted. This
situation can be avoided if the RMS takes steps to ensure that the AcksTo EPRs
for any Sequence's it creates are sufficiently unique as to cause the RMD to rule
out the possibility of piggybacking acknowledgments for these Sequences.

R0503 An RMS that does not support the processing of
piggybacked SequenceAcknowledgement
headers MUST differentiate the AcksTo EPRs
for any Sequence's it creates from other EPRs.

The term "differentiate" in the above requirement refers to the process of altering
the information in the EPR in such a way as to cause the RMD to rule out the
possibility of piggybacking acknowledgments for these Sequences while
preserving the RMDs ability to connect to the proper transport endpoint. For
example, suppose a particular instance of a web services stack maintains a
generic, asynchronous callback facility at
http://b2b.foo.com/async/AsyncResponseService. In general, all the EPRs
minted by this instance for the purpose of servicing callbacks will have this URI
as the value of their wsa:Address element. However, if this web services stack
does not support the processing piggybacked acknowledgements, the use this
value in the AcksTo EPR creates the potential for the problem described above.
The RMS implementation of this web services stack could fulfill this requirement
by specifying http://b2b.foo.com/async/AsyncResponseService?p={unique value}
as the address of the AcksTo EPR for any sequences it creates. Since each
sequence has a "different" AcksTo EPR (as defined by R0500) from all the other
services listening for callbacks, no RSP 1.0 compliant RMD will piggyback
acknowledgements for these sequences, though each RMD (in the case of
SOAP/HTTP) will correctly connect to http://b2b.foo.com and POST to
/async/AsyncResponseService.

3.6 Sequence Assignment

WS-ReliableMessaging 1.1 is silent on the mechanism for assigning messages
(either request messages or response messages) to a particular Sequence.
While this flexibility is beneficial from a general web services specification
perspective, it creates some interoperability issues.

3.6.1 Sequence Assignment for Reliable Response Messages
Given a scenario in which a consumer and a provider engage in a series of
reliable request/response exchanges, it is important for the consumer and

provider to have a common understanding of the Sequence assignment
mechanism for reliable response messages.

R0600 An RMS SHOULD use the same Sequence for
all reliable response messages (replies and
faults) corresponding to all reliable request
messages that shared the same Sequence.

Note that the RMS referred to above is a "server-side RMS" (i.e. the RMS
responsible for transmitting response messages from the producer to the
consumer in a reliable fashion).

3.7 Sequence Identifiers

Under certain conditions it is possible for the CreateSequence or
CreateSequenceResponse messages to be lost or delayed. Depending upon the
timing of the attempts to resend such messages, it is possible to receive
duplicate CreateSequence or CreateSequenceResponse messages (in fact, it is
possible to receive duplicate messages even without retries). This creates the
potential for CreateSequence and CreateSequenceResponse messages that
contain duplicate Sequence Identifiers. Furthermore there are situations in which
one party (RMS or RMD) may erroneously send a CreateSequence or
CreateSequenceResponse message with a duplicate Sequence Identifier. Due to
the crucial role of Sequence Identifiers in the WS-RM protocol, the handling of
duplicate Sequence Identifiers needs to be further refined to prevent
interoperability problems.

3.7.1 Duplicate Identifier in CreateSequenceResponse
Regardless of the causative circumstances, the existence of two, non-terminated
Sequences with the same Identifier makes it difficult for the RMS to correctly
function, therefore the RMS should take steps to prevent this condition.

R0700 The RMS MUST generate a fault when it
receives a CreateSequenceResponse that
contains a Sequence Identifier that is the same
as the Identifier of a non-terminated Sequence.

Note that this requirement does not differentiate between duplicate Identifiers
created by "the same" RMD or "different" RMDs; the simple fact that the RMS
already has an active Sequence with the same Identifier is enough to trigger this
requirement.

4. Secure Conversation
The Profile includes the use of WS-SecureConversation 1.3 to request and issue
security tokens and to broker trust relationship.

This section of the Profile incorporates the following specifications by reference:

• WS-SecureConversation 1.3

4.1 Fault Codes for Unsupported Context Tokens

4.1.1 Unsupported Key Sizes
During the establishment of a security context, it is possible for a participant to
obtain an SCT that, for some reason (key sizes, etc.), it cannot support. To
promote interoperability, the parties involved in the establishment of a security
context should share a common understanding of such a situation. WS-SC's
references to other "more specific fault codes" opens the possibility for one
participant to use fault codes that are not recognized by the other participants.

R1000 If a RECEIVER obtains an SCT that it cannot, for
whatever reason, support, the RECEIVER
MUST generate a fault using the
wsc:UnsupportedContextToken fault code.

This requirement is a specific exception to the general guidelines outlined by
R0001.

4.2 Demonstrating Proof of Possession

When attempting to amend, renew or cancel a security context, it is necessary
for the requester to prove that they possess the key associated with the security
context. WS-SecureConversation recommends, but does not require, that this be
done in a specific fashion. This creates the potential for implementations to
demonstrate proof of possession in ways that are not mutually understood, to the
obvious detriment of both interoperability and security.

4.2.1 Amending Contexts
When attempting to amend an existing security context, the use of a single
mechanism to demonstrate proof of possession of the key associated with the
security context improves interoperability.

R1100 When a SENDER makes a request to amend the
claims associated with a security context, it
MUST demonstrate proof of possession of the
key associated with the security context by
creating a signature over the message body
and crucial headers using that key.

4.2.2 Renewing Contexts
When attempting to renew a security context, the use of a single mechanism to
demonstrate proof of possession of the key associated with the security context
improves interoperability.

R1110 When a SENDER makes a request to renew a
security context, it MUST demonstrate proof of
possession of the key associated with the

http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.doc

security context by creating the original claims
signature over the signature that signs the
message body and crucial headers.

4.2.3 Cancelling Contexts
When attempting to cancel a security context, the use of a single mechanism to
demonstrate proof of possession of the key associated with the security context
improves interoperability.

R1120 When a SENDER makes a request to cancel a
security context, it MUST demonstrate proof of
possession of the key associated with the
security context by creating a signature over
the message body and crucial headers using
that key.

4.3 Claims Re-Authentication

4.3.1 Re-Authenticating Claims
As per section 5 of the WS-SecureConversation specification, the request to
renew a security context must include the re-authentication of the context's
original claims. It is recommended, but not required, that the claims re-
authentication be done in the same manner as the original token issuance
request. This creates the potential for some implementations of WS-
SecureConversation to attempt claims re-authentication in a manner different
than the original token issuance request, to the obvious detriment of both
interoperability and security.

R1200 When a SENDER makes a request to renew a
security context, it MUST re-authenticate the
original claims in the same way as in the
original token issuance request.

4.4 Referencing Security Context Tokens

4.4.1 Associating a Security Context
Section 8 of WS-SecureConversation states that references to an SCT from
within a wsse:Security header, a wst:RequestSecurityToken element, or a
wst:RequestSecurityTokenReponse element may be either message dependent
or message independent. However, references to SCTs from outside a
wsse:Security header (or an RST, or an RSTR) must be message independent.
Since message independent references provide a superset of the functionality of
message dependent references, and it is simpler to support one mechanism for
referencing SCTs than two, this profile includes the following requirement:

R1300 In an ENVELOPE that contains either a
wsse:Security header, a
wst:RequestSecurityToken element, or a

wst:RequestSecurityTokenReponse element in
which there are references to
wsc:SecurityContextToken elements, such
references MUST be message independent
(i.e. MUST use a wsse:Reference to the
wsc:Identifier element).

4.4.2 Derived Token References to Security Contexts
Section 7 of the WS-SecureConversation specification describes a mechanism
for using keys derived from a shared secret for signing and encrypting the
messages associated with a security context. The wsc:DerivedKeyToken element
is used to express these derived keys. WS-SC states that the
/wsc:DerivedKeyToken/wsse:SecurityTokenReference element SHOULD be
used to reference the wsc:SecurityContextToken of the security context who's
shared secret was used to derive the key. This creates an interoperability issue
because it leaves open the possibility for a derived key to either lack any
relationship between the shared secret or for this relationship to be expressed by
some mechanism other than a wsse:SecurityTokenReference.

R1310 When a SENDER uses a wsc:DerivedKeyToken,
the wsse:SecurityTokenReference element
MUST be used to reference the
wsc:SecurityContextToken of the security
context from which they key is derived.

To properly and interoperably process derived keys it is necessary to relate the
key to the shared secret from which it is derived. There are no alternatives to
using wsse:SecurityTokenReference's that are consistent with WS-Security.

4.5 Addressing Headers

4.5.1 Protecting Addressing Headers
Since the semantics of the WS-SecureConversation protocol are dependent
upon the value of various WS-Addressing headers, ensuring the proper
functioning of WS-SecureConversation requires protecting the integrity of these
headers.

R1400 When present in an ENVELOPE, each of the
following SOAP header blocks MUST be
included in the signature whenever the
soap:Body in that ENVELOPE is signed:
wsa:To, wsa:From, wsa:ReplyTo, wsa:Action,
wsa:FaultTo, wsa:MessageId, wsa:RelatesTo.

This requirement is not specific to the use of WS-SecureConversation. It applies
whenever WS-Security is being used in conjunction with WS-Addressing.

5. MakeConnection

The Profile includes the use of WS-MakeConnection 1.0 to transfer messages
using a transport-specific back-channel.

This section of the Profile incorporates the following specifications by reference:

• Web Services Make Connection 1.0

5.1 Using MakeConnection

The use of MakeConnection is subject to the following requirements:

5.1.1 Addressing Variants
The WS-MakeConnection specification defines two distinct ways for the MC-
Sender to indicate its messages of interest. One of these mechanisms uses the
wsmc:MakeConnection Anonymous URI, the other uses a WS-RM Sequence ID.
However, the WS-MakeConnection specification doesn't define any way of
advertising or agreeing upon which variant of the MakeConnection protocol is
supported or required by an endpoint. This creates the potential for different,
incompatible implementations of WS-MakeConnection. To promote
interoperability this Profile refines the WS-MakeConnection specification with
additional requirements to mandate the use of a single, consistent addressing
variant. Since the URI variant of WS-MakeConnection is a superset of the
functionality of the Sequence-ID variant, use of the URI variant is mandated by
this Profile.

R2000 If an ENVELOPE contains a
wsmc:MakeConnection element as a child of
the soap:Body, the wsmc:MakeConnection
element MUST contain a wsmc:Address child
element.

R2001 If an ENVELOPE contains a
wsmc:MakeConnection element as a child of
the soap:Body, the wsmc:MakeConnection
element MUST NOT contain a wsrm:Identifier
child element.

5.1.2 MakeConnection Anonymous URI
In section 3.1 of the WS-MakeConnection specification the WS-MC Anonymous
URI is defined to uniquely identity anonymous endpoints and to signal the
intention to use the MakeConnection protocol to transfer messages between the
endpoints. The WS-MakeConnection protocol uses the receipt of the
MakeConnection message at an endpoint as the mechanism by which the back-
channel of that connection can be uniquely identified. Once identified, the MC
Receiver is then free to use that back-channel to send any pending message
targeted to the URI specified within the MakeConnection message.

http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.0-spec-cs-01.pdf

R2010 When an MC-SENDER wishes to use the
MakeConnection protocol to retrieve a
message targeted to an EPR, the
wsmc:MakeConnection Anonymous URI
MUST be used within [address] property of that
EPR.

R2011 Once the MakeConnection protocol is
established through the exchange of an EPR
that contains the wsmc:MakeConnection
Anonymous URI as its [address] property, the
MakeConnection message MUST be used to
transfer messages targeted to that EPR from
the MC-RECEIVER to the MC-SENDER.

5.1.3 Use of MessagePending
The MakeConnection protocol defines the MessagePending header so that the
MC Receiver can signal whether or not there are additional messages waiting to
be delivered. The MC Sender can then use this information to determine the
appropriate delay (if any) before sending another MakeConnection message.

R2020 The MC-RECEIVER MUST include a
MessagePending header on any message
returned in response to a MakeConnection
message, when additional messages are
waiting to be transferred to the EPR that
contains the wsmc:MakeConnection
Anonymous URI.

6. Secure Reliable Messaging
This section of the Profile contains requirements that address the composition of
reliable and secure messaging.

This section of the Profile incorporates the following specifications by reference:

• Web Services Reliable Messaging (WS-ReliableMessaging) 1.1
• Web Services Make Connection 1.0
• WS-SecureConversation 1.3
• WS-SecurityPolicy 1.2

6.1 Initiating a Secure Sequence

6.1.1 Secure Context Identification
Section 5.2.2.1 of the WS-ReliableMessaging specification states that "During
the CreateSequence exchange, the RM Source SHOULD explicitly identify the
security context that will be used to protect the Sequence". This leaves open the

http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-cs-01.pdf
http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.0-spec-cs-01.pdf
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.doc
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-cs.doc

possibility for RMS implementations that, for some reason, attempt to use WS-
SC to secure their Sequences in some manner that does not explicitly identify the
security context that will be used to protect the Sequence (e.g. by some out of
band understanding of an inferred security context). This possibility creates an
obvious operational and interoperability issues since (a) point-to-point, out-of-
band configuration creates unscalable operational overhead and (b) not all WS-
RM implementations may be capable of supporting such understandings.

R3000 During the wsrm:CreateSequence exchange, the
RMS MUST explicitly identify the security
context that will be used to protect the
Sequence.

This requirement only applies to those scenarios in which WS-SC is being used
to protect a WS-RM Sequence.

6.1.2 Security Token References
In order to transmit a wsrm:CreateSequence that has been extended to include a
wsse:SecurityTokenReference, an RMS must ensure that the RMD both
understands and will conform with the requirements listed above.

R3010 If an ENVELOPE contains a
wsrm:CreateSequence element as a child of
the soap:Body and that wsrm:CreateSequence
element has been extended with a
wsse:SecurityTokenReference element, the
ENVELOPE MUST also include the
UsesSequenceSTR element as a SOAP
header block.

6.2 Signature Coverage

When using WS-SecureConversation to secure a WS-ReliableMessaging
Sequence there exists both security and interoperability issues around the
inclusion of SOAP message elements within signatures.

6.2.1 Single Signature for Sequence Header and SOAP Body
As discussed in Section 5.1.1 of WS-ReliableMessaging, any mechanism which
allows an attacker to alter the information in a Sequence Traffic Message or
break the linkage between a wsrm:Sequence header block and its assigned
message, represents a threat to the WS-RM protocol.

R3100 When present in an ENVELOPE, the
wsrm:Sequence header block and the SOAP
body MUST be signed with a common
signature that uses the key(s) associated with
security context, if any, that protects the
applicable sequence.

6.2.2 Signed Elements
As discussed in Section 5.1.1 of WS-ReliableMessaging, any mechanism which
allows an attacker to alter the information in a Sequence Lifecycle Message,
Acknowledgement Messages, Acknowledgement Request, or Sequence-related
fault represents a threat to the WS-RM protocol.

R3110 If a wsrm:CreateSequence,
wsrm:CreateSequenceResponse,
wsrm:CloseSequence,
wsrm:CloseSequenceResponse,
wsrm:TerminateSequence, or
wsrm:TerminateSequenceResponse element
appears in the body of an ENVELOPE, that
body must be signed using the key(s)
associated with security context, if any, that
protects the applicable sequence.

R3111 If a wsrm:AckRequested, or
wsrm:SequenceAcknowledgement element
appears in the header of an ENVELOPE, that
element must be signed using the key(s)
associated with security context, if any, that
protects the applicable sequence.

R3112 When using SOAP 1.2, if a soap12:Fault
element appears as the body of an
ENVELOPE and the fault relates to a known
sequence, the soap12:Body must be signed
using the key(s) associated with security
context, if any, that protects the applicable
sequence.

6.2.3 Single Signature for SOAP 1.1 Fault and SequenceFault Header
As described in Section 4.1 of WS-ReliableMessaging, the wsrm:SequenceFault
element is used to carry the specific details any SOAP 1.1 faults generated
during the WS-RM-specific processing of a message. As with SOAP 1.2, the
integrity of fault information needs to be protected. In addition to this, it is
necessary to ensure that the linkage between a wsrm:SequenceFault header and
the soap11:Fault body is preserved.

R3120 When using SOAP 1.1, if a wsrm:SequenceFault
appears in the header of an ENVELOPE, the
soap11:Body and the wsrm:SequenceFault
header MUST be signed with a common
signature that uses the key(s) associated with
security context, if any, that protects the
applicable sequence.

6.3 Secure Use of MakeConnection

This Profile places additional requirements on the composition of
MakeConnection, WS-SecureConversation, and WS-ReliableMessaging.

6.3.1 Security Context for MakeConnection
From a security standpoint, it will be commonly desired that the security context
of the message sent on the backchannel established by a MakeConnection and
that of the MakeConnection message itself be the same.

R3200 An MC-RECEIVER MUST scope its searching of
messages to those that were processed under
the same security context as the message
carrying the EPR that used the
wsmc:MakeConnection Anonymous URI.

6.4 Replay Detection

As mentioned in Section 5 of WS-ReliableMessaging, there is a potential tension
between certain aspects of security and reliable messaging; a security
implementation may attempt to detect and prevent message replay attacks, but
one of the invariants of the WS-RM protocol is to resend messages until they are
acknowledged. Implementations must have the information necessary to
distinguish between a valid retransmission of an unacknowledged message and
a replayed message.

6.4.1 Unique Timestamp Values

R3300 In the absence of WS-SecurityPolicy assertions
that indicate otherwise, an ENVELOPE that
contains a wsrm:Sequence header MUST
contain a wsu:Timestamp as a sub-element of
the wsse:Security header.

R3301 For any two ENVELOPEs that contain WS-RM
Sequence headers in which the value of their
wsrm:Identifier and wsrm:MessageNumber
elements are equal, it MUST be true that
neither of the envelopes contains a
wsu:Timestamp as a child element of
wsse:Security header, OR that both messages
contain a wsu:Timestamp as child elements of
their wsse:Security headers and the value of
these wsa:Timestamp elements are NOT
equal.

Appendix A: Referenced Specifications
The following specifications' requirements are incorporated into the Profile by
reference, except where superseded by the Profile:

• Web Services Reliable Messaging (WS-ReliableMessaging) 1.1
• Internationalized Resource Identifiers (IRIs)
• Web Services Addressing 1.0 - SOAP Binding
• WS-SecureConversation 1.3
• Web Services Make Connection 1.0
• WS-SecurityPolicy 1.2

Appendix B: Extensibility Points
This section identifies extensibility points, as defined in "Scope of the Profile," for
the Profile's component specifications.

These mechanisms are out of the scope of the Profile; their use may affect
interoperability, and may require private agreement between the parties to a Web
service.

There are no extensibility points defined for this profile.

Appendix C: Acknowledgements
This document is the work of the WS-I Reliable Secure Profile Working Group,
whose members have included:

Robert Freund (Hitachi Ltd.).

http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-cs-01.pdf
http://www.ietf.org/rfc/rfc3987.txt
http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.doc
http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.0-spec-cs-01.pdf
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-cs.doc

