
 WS-I Usage Scenarios

14 April 2003 Page 1 of 39

© Copyright 2003 by the Web Services-Interoperability Organization. All rights reserved.

WS-I Usage Scenarios

Document Status: WS-I Board Approval Draft

Version: 1.01

Date: April 14, 2003

Editors: Scott Werden, WRQ

 Colleen Evans, Sonic Software

 Marc Goodner, SAP

Table of Contents

1 Introduction ... 5
1.1 How to use this document... 5

2 Usage Scenario Taxonomy.. 5
2.1 Web Service Stack... 5
2.2 Activities .. 6

2.2.1 Data Layer Activities ... 7
2.2.2 SOAP Message Layer Activities ... 7
2.2.3 Transport Layer Activities .. 8
2.2.4 Web Service Actors... 8

2.3 Security ... 8
3 Usage Scenarios.. 8

3.1 One-way .. 8
3.1.1 Description.. 8
3.1.2 Flow ... 9
3.1.3 Flow Constraints..11
3.1.4 Description Constraints ..12
3.1.5 UDDI...13
3.1.6 Security ...14

3.2 Synchronous Request/Response ...14
3.2.1 Description...14
3.2.2 Flow ..14
3.2.3 Flow Constraints..18
3.2.4 Description Constraints: WSDL..19

 WS-I Usage Scenarios

14 April 2003 Page 2 of 39

© Copyright 2003 by the Web Services-Interoperability Organization. All rights reserved.

3.2.5 UDDI...20
3.2.6 Security ...20

3.3 Basic Callback ..20
3.3.1 Description...21
3.3.2 Details ...22
3.3.3 Flow ..22
3.3.4 Flow Constraints..30
3.3.5 Description Constraints ..30
3.3.6 UDDI...33
3.3.7 Security ...33

4 Appendix 1 – Security ...34
4.1 Authentication..34

4.1.1 Request Authentication ..34
4.1.2 Response Authentication ..34

4.2 Authorization ...35
4.2.1 Request Authorization ..35

4.3 Confidentiality..35
4.4 Data Integrity ..36
4.5 Replay ..36
4.6 Logging and Auditing ..36
4.7 Other Risks..36

5 Appendix 2 – Constraints...36
5.1 Write XML..37
5.2 Process XML...37
5.3 Write SOAP Envelope ..37
5.4 Process SOAP Envelope ...37
5.5 Write SOAP Body ..37
5.6 Process SOAP Body...37
5.7 Write SOAP Header ...37
5.8 Process SOAP Header ..37
5.9 Send HTTP...37
5.10 Receive HTTP ...38
5.11 General WSDL Constraints ...38
5.12 Constraints on WSDL types ..38
5.13 Constraints on WSDL messages ..38
5.14 Constraints on WSDL portTypes..38

 WS-I Usage Scenarios

14 April 2003 Page 3 of 39

© Copyright 2003 by the Web Services-Interoperability Organization. All rights reserved.

5.15 Constraints on WSDL Bindings..38
5.16 Constraints on WSDL Port ..39
5.17 General UDDI constraints...39

6 References ..39

Table of Figures

Figure 2-1 Web services stack .. 6
Figure 3-1 One-way Sequence .. 9
Figure 3-2 One-way Request ...10
Figure 3-3 One-way Acknowledgement ...11
Figure 3-4 Synchronous Request/Response Sequence ...14
Figure 3-5 Synchronous Request..15
Figure 3-6 Synchronous Response..17
Figure 3-7 Basic Callback Sequence..21
Figure 3-8 Basic Callback Consumer Request ...23
Figure 3-9 Basic Callback Provider Acknowledgement..25
Figure 3-10 Basic Callback Provider Response..27
Figure 3-11 Basic Callback Consumer Acknowledgement ...29

 WS-I Usage Scenarios

14 April 2003 Page 4 of 39

© Copyright 2003 by the Web Services-Interoperability Organization. All rights reserved.

Revision History

Version 1.0 Original version

Version 1.01 Revisions to Board Approval Draft to reflect late changes to the Basic Profile 1.0

Copyright

Copyright © 2002, 2003 WS-I Organization. No part of this document may be reproduced without the
permission of WS-I Organization.

Confidentiality

This document contains proprietary information that is confidential and shall not be made available to
unauthorized persons.

 WS-I Usage Scenarios

14 April 2003 Page 5 of 39

© Copyright 2003 by the Web Services-Interoperability Organization. All rights reserved.

1 Introduction
WS-I Usage Scenarios define the use of Web services in structured interactions, identifying basic
interoperability requirements for such interactions and mapping the flow of a scenario to the
requirements of the WS-I Basic Profile 1.0 (hereafter, Basic Profile) [1]. Scenarios are independent of
any application domain. WS-I Use Cases employ Scenarios to model high-level definitions of specific
applications.

The scenarios presented here can be composed or extended. That is, they describe fundamental Web
service design patterns that can be combined and built upon like building blocks. For example, the
Synchronous Request/Response scenario describes a basic exchange and can be expanded by adding
SOAP headers. The only requirement is that the extensions must also conform to the Basic Profile.

1.1 How to use this document

This document describes the WS-I Usage Scenarios to be used with the Basic Profile. The Basic Profile
constraints and requirements are referenced directly and the reader is expected to use the Basic Profile
in conjunction with this document to interpret the referenced information.

The three scenarios presented in this document are intended to provide sufficient information so that a
user of this document can create WS-I compliant Web service applications using one of more of the
scenarios. All applicable guidelines and restrictions for the messages and service description instances
for each scenario are provided.

2 Usage Scenario Taxonomy
The Usage Scenario taxonomy defines a structure for applying the Basic Profile constraints. The
taxonomy consists of a Web services stack and a set of activities, grouped by the layers of the stack,
that a Web service instance executes as part of the Web service Usage Scenario. The constraints of the
Basic Profile are applied to each activity as well as to the optional components of the scenario, e.g., the
WSDL for the description of the Web service instance. There are two types of constraints on scenarios:

• Flow Constraints applying to each activity that takes part in the flow of the Web service. These
include: expressing the Web service data model in XML, creating and consuming messages using
SOAP, transporting messages using HTTP

• Description Constraints applying to the description of the Scenario. Operationally, the description
of a Web service instance occurs in WSDL and possibly UDDI, therefore, these constraints are
applied to the WSDL and UDDI describing the Scenario.

The following are attributes of WS-I Usage Scenarios:

• They include a flow description, linking together the set of activities specific to the scenario,

• They include optional components, such as SOAP headers or security,

• They are described with a WSDL document,

• Each activity within a scenario has constraints applied to it by the Basic Profile, and

• They represent a real-world Web service implementation.

2.1 Web Service Stack

The Usage Scenario taxonomy is based on a Web services stack. Each layer of the stack represents one
of the fundamental functional areas of a Web service instance. Not all possible functional areas are
represented (e.g., security or coordination), only the most basic. These layers are depicted in the
following diagram.

 WS-I Usage Scenarios

14 April 2003 Page 6 of 39

© Copyright 2003 by the Web Services-Interoperability Organization. All rights reserved.

Figure 2-1 Web services stack

A Web service application may include several logical layers incorporating functions such as the Web
service instance and application business logic. The Basic Profile and Usage Scenarios do not address
application business logic except where the functionality of any part of the Web services stack is
implemented within the business logic.

The details of each layer of the Web service stack are:

Data Layer

The data layer translates the application specific data into the model chosen for the specific Web service.
The data layer includes the functions necessary to support flexible data typing. This layer maps to the
wsdl:types and wsdl:message definitions within a WSDL document.

SOAP Message Layer

The SOAP message layer is the infrastructure that processes SOAP messages, dispatches them, and may
optionally fulfill Quality of Service requirements. On the sending side the message layer writes SOAP
messages, based on the data model defined in portTypes and bindings. On the receiving side the
message layer processes the SOAP messages and dispatches requests to the correct application or
method.

Transport Layer

The transport layer sends and receives messages. For the Basic Profile, this includes only HTTP client
and server platforms. This layer maps to the wsdl:binding and wsdl:port definitions with the WSDL
document.

2.2 Activities

A set of activities is defined for each layer of the Web service stack. Activities are the fundamental
operations that comprise a Web service. A single activity has several constraints applied to it from the
Basic Profile. For example, one activity might be “Send HTTP” and the specifications and guidelines for
how to fulfill that activity come from the SOAP 1.1 and HTTP sections of the Basic Profile.

The following table summarizes these activities.

Layer Activity

Data Layer Write XML

Data

SOAP Message

Transport

Web Service

Data

SOAP Message

Transport

Web Service

HTTP

SOAP

XML

Message

 WS-I Usage Scenarios

14 April 2003 Page 7 of 39

© Copyright 2003 by the Web Services-Interoperability Organization. All rights reserved.

Layer Activity

Process XML

SOAP Message Layer Write SOAP envelope

Process SOAP envelope

Write SOAP body

Process SOAP body

Write SOAP header

Process SOAP header

Transport Layer Send HTTP

Receive HTTP

Table 1 - Activities grouped by Web services stack layer

2.2.1 Data Layer Activities

The following activities are part of the Data layer:

Write XML

Application-level messages that are to be exchanged during a Web services interaction must be written
to a serialized form that can be transported with the underlying transport protocol. These messages use
the data types and formats declared in the data model documentation (i.e., WSDL or Schema). Writing
the message data is the responsibility of the application component sending a message to a recipient.

Process XML

Application-level messages that are exchanged in a Web services interaction are passed to application
components responsible for receiving, interpreting and acting upon the received messages. Application
components process message data according to the types and formats declared in the data model
documentation.

2.2.2 SOAP Message Layer Activities

The following activities are executed with the SOAP Message Layer.

SOAP envelope

The SOAP envelope is the container for all the other SOAP message parts, including the payload.

• Write SOAP envelope

• Process SOAP envelope

SOAP body

The SOAP body is used for transporting application-specific information included in the application
message data. The activities in this layer are different from the data payload writing and processing
activities described in the Data Layer activities section.

• Write SOAP body

• Process SOAP body

SOAP header

The SOAP header provides a modular mechanism for extending a SOAP message.

 WS-I Usage Scenarios

14 April 2003 Page 8 of 39

© Copyright 2003 by the Web Services-Interoperability Organization. All rights reserved.

• Write SOAP header

• Process SOAP header

2.2.3 Transport Layer Activities

SOAP messages may be sent using the HTTP or HTTPS transport protocols.

• Send HTTP

• Receive HTTP

2.2.4 Web Service Actors

In WS-I Web services scenarios there are two high level actors. These are not related to SOAP Actors as
defined in SOAP 1.1.

Consumer

A Consumer is responsible for making requests of a service implemented by a Provider.

Provider

A Provider is responsible for listening for and processing Consumer service requests.

2.3 Security

Usage scenarios do not explicitly address authentication, authorization, identification, or privacy.
However, some of those concerns can be addressed with existing technologies that are compatible with
the Basic Profile. For example, the HTTPS binding can be used rather than the un-encrypted HTTP
binding. Application level security can always be added within the message layer and this would be
entirely transparent to the Basic Profile.

Countermeasures are best applied through a risk assessment of your Web service application. To assist
in this process please see the Security Appendix below for more detailed information on common threats
and Basic Profile compliant mitigation strategies. Each Usage Scenario includes a section detailing
additional concerns as well as the identified common threats most relevant to the given scenario.

3 Usage Scenarios
This section defines the three Usage Scenarios developed to complement the Basic Profile:

• One-way

• Synchronous request/response

• Basic callback

3.1 One-way

3.1.1 Description

A Consumer sends a request message to a Provider. The Provider receives the message and processes
it.

The exchange is one way; no SOAP response message from the Provider is generated or expected. The
underlying transport is not required to guarantee delivery of the message to the Provider. Regardless of
the protocol implemented by the transport layer, the Consumer receives no acknowledgement above the

 WS-I Usage Scenarios

14 April 2003 Page 9 of 39

© Copyright 2003 by the Web Services-Interoperability Organization. All rights reserved.

transport layer that the message was successfully sent, delivered to the intended destination, or
received by the Provider.

This Scenario applies to situations where information loss is inconsequential (for example, in a status
monitoring scenario where periodic status update events are provided such that if one update event is
lost, a subsequent update event will convey correct status).

Figure 3-1 One-way Sequence

High-level flow:

1. Consumer invokes the service by sending a SOAP message bound to an HTTP request to
the Provider

2. Provider executes the service.

Assumptions:

• This scenario describes a runtime sequence of events; it does not describe the design or
deployment activities.

• The data model, the application semantics, and the transport bindings are all agreed upon and
implemented a priori to this scenario.

• All parts of this scenario are defined in conformance with the guidelines and recommendations of
the Basic Profile.

• This scenario is “composable”, that is, it may be used as a foundation for creating more complex
scenarios.

3.1.2 Flow

The detailed flow for this scenario, using the activities defined in Section 2.2, is described below. Each
bulleted item represents the activities performed within one layer of the stack required to complete the
flow. The order of activities within a Consumer or Provider is not significant. Each activity has constraints
imposed upon it from the Basic Profile.

 WS-I Usage Scenarios

14 April 2003 Page 10 of 39

© Copyright 2003 by the Web Services-Interoperability Organization. All rights reserved.

Figure 3-2 One-way Request

The Consumer initiates a SOAP request:

• Data Layer

o Write XML. The payload is created according to the data model.

• SOAP Message Layer

o Write SOAP envelope

o Write SOAP body

• Transport Layer

 WS-I Usage Scenarios

14 April 2003 Page 11 of 39

© Copyright 2003 by the Web Services-Interoperability Organization. All rights reserved.

o Send HTTP

The Provider receives the SOAP request:

• Transport Layer

o Receive HTTP

• SOAP Message Layer

o Process SOAP envelope

o Process SOAP body

• Data Layer

o Process XML. The data payload is processed according to the data model and dispatched
to the application

Figure 3-3 One-way Acknowledgement

The Provider sends the acknowledgement:

• Transport Layer

o Send HTTP. Note that the HTTP response can be sent at any time relative to the
processing of the SOAP message. There is no SOAP envelope sent with the HTTP
response.

The Consumer receives the acknowledgement:

• Transport Layer

o Receive HTTP (status code). This is ignored by the higher layers of the Web services
stack.

3.1.3 Flow Constraints

The following are the flow constraints upon this Usage Scenario.

• Write XML, as defined in Section 5.1

• Write SOAP envelope, as define in Section 5.3

 WS-I Usage Scenarios

14 April 2003 Page 12 of 39

© Copyright 2003 by the Web Services-Interoperability Organization. All rights reserved.

• Write SOAP body, as define in Section 5.5

• Send HTTP, as defined in Section 5.9. Further constraint specific to this scenario is R2714.

• Receive HTTP, as defined in Section 5.10. Further constraints specific to this scenario are R2727 and R2750.

• Process SOAP envelope, as defined in Section 5.4

• Process SOAP body, as defined in Section 5.6

• Process XML, as defined in Section 5.2

3.1.3.1 Error conditions and SOAP Fault

A SOAP Fault cannot be generated in this scenario since there is no SOAP response message. If any
error occurs in the Provider, the Provider and Consumer must respectively abide by R2714.

3.1.3.2 SOAP Headers

Use of a SOAP header is optional for this scenario. If it is used, it must follow the constraints for the Write SOAP
Header and Process SOAP Header activities, as defined in Section 5.7 and 5.8, respectively.

3.1.4 Description Constraints

The WSDL should have at least the following content within its definitions for the One-way Scenario. Not
all sections are required, but if present in the WSDL, each should follow the guidelines as presented
below. General constraints on the WSDL are described in Section 5.11. Other constraints imposed upon
the WSDL by the Basic Profile are listed below.

3.1.4.1 types

This section is not required and if present, will be dependent upon the specifics of the data model.

Constraints on WSDL types are listed in Section 5.12.

3.1.4.2 messages

Message format will be dependent upon the data model (doc/literal or rpc/literal). Only one message is
defined: one input.

3.1.4.2.1 Document messages
Document messages parts are composed from Schema element definitions (see R2204)

<wsdl:message …>

 <wsdl:part name=”Input” element=”..”>

</wsdl:message>

3.1.4.2.2 RPC messages
RPC messages parts are composed from Schema type declarations (see R2203)

<wsdl:message …>

 <wsdl:part name=”Input“ type=”..” />

</wsdl:message>

Other constraints are listed in Section 5.13.

 WS-I Usage Scenarios

14 April 2003 Page 13 of 39

© Copyright 2003 by the Web Services-Interoperability Organization. All rights reserved.

3.1.4.3 portTypes

The one-way transmission primitive must be used. Grammar is:

<wsdl:portType ..>

<wsdl:operation …>

 <wsdl:input …/>

 </wsdl:operation>

</wsdl:portType>

Other constraints are listed in Section 5.14.

3.1.4.4 binding

The wsdl:binding section must use the SOAP binding extension with HTTP transport. The same
operation type defined in wsdl:portType must be used in the binding section.

<wsdl:binding …>

 <soap:binding style=”rpc|document” transport=http://schemas.xmlsoap.org/soap/http>
 <wsdl:input …>

 </wsdl:input>

 </soap:binding>

</wsdl:binding>

Other constraints are listed in Section 5.15.

3.1.4.5 port

The soap:address element must be specified along with the URL for the endpoint:

<wsdl:port>

 <soap:address location=”uri” />

</wsdl:port>

Other constraints are listed in Section 5.16.

3.1.5 UDDI

Advertisement of Web services patterned after this scenario adheres to the “Using WSDL in a UDDI
Registry, Version 1.07” Best Practice document. A uddi:tModel representing the Web service type
references the file containing the wsdl:binding for the message operation. The uddi:bindingTemplate
captures the service endpoint and references the uddi:tModel(s) for the Web service type.

Advertising Web services in this way enables discovery using the inquiry patterns supported by the UDDI
Inquiry API set (see http://www.uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.pdf).
These include the browse pattern, the drill-down pattern and the invocation pattern.

General UDDI Constraints are listed in Section 5.17.

 WS-I Usage Scenarios

14 April 2003 Page 14 of 39

© Copyright 2003 by the Web Services-Interoperability Organization. All rights reserved.

3.1.6 Security

This section identifies the threats most relevant to this Usage Scenario as described in Appendix 1 where
additional information on Basic Profile compliant countermeasures may also be found.

Additional constraints may apply if HTTPS is used to implement security. These are Profile requirements:
R5000, R5001, R5010, . Appendix 1 has additional guidelines on Security.

As of this writing no specific threat has been identified as being singularly relevant to this Usage
Scenario.

3.2 Synchronous Request/Response

3.2.1 Description

A Consumer sends a request message to a Provider. The Provider receives the message, processes it,
and sends back a response.

The following diagram shows the high-level interactions between a Consumer and a Provider in the
Synchronous Request/Response Usage Scenario.

Figure 3-4 Synchronous Request/Response Sequence

High-level flow:

1. Consumer invokes the service by sending a SOAP message bound to an HTTP request to
the Provider

2. Provider executes the service and sends a SOAP message bound to an HTTP response to
the Consumer

Assumptions:

1. This scenario is a runtime sequence of events; it does not involve any design or deployment
activities.

2. The data model, the application semantics, and the transport bindings are all agreed upon and
implemented a priori to this scenario.

3. This scenario is “composable”, that is, it may be used as a foundation for creating more complex
scenarios.

4. The Request and Response messages are synchronized through the HTTP transport.

3.2.2 Flow

 WS-I Usage Scenarios

14 April 2003 Page 15 of 39

© Copyright 2003 by the Web Services-Interoperability Organization. All rights reserved.

The detailed flow for this scenario, using the activities defined in Section 2.2, is described below. Each
bulleted item represents the activities performed within one layer of the stack required to complete the
flow. The order of activities within a Consumer or Provider is not significant. Each activity has constraints
imposed upon it from the Basic Profile.

Figure 3-5 Synchronous Request

The Consumer initiates a SOAP request:

• Data Layer

o Write XML. The payload is created according to the data model.

• SOAP Message Layer

 WS-I Usage Scenarios

14 April 2003 Page 16 of 39

© Copyright 2003 by the Web Services-Interoperability Organization. All rights reserved.

o Write SOAP envelope

o Write SOAP body

• Transport Layer

o Send HTTP

The Provider receives the SOAP request:

• Transport Layer

o Receive HTTP

• SOAP Message Layer

o Process SOAP envelope

o Process SOAP body

• Data Layer

o Process XML. The data payload is processed according to the data model and dispatched
to the application

 WS-I Usage Scenarios

14 April 2003 Page 17 of 39

© Copyright 2003 by the Web Services-Interoperability Organization. All rights reserved.

Figure 3-6 Synchronous Response

The Provider generates a SOAP response:

• Data Layer

o Write XML. The payload is created according to the data model.

• SOAP Message Layer

o Write SOAP envelope

o Write SOAP body

• Transport Layer

 WS-I Usage Scenarios

14 April 2003 Page 18 of 39

© Copyright 2003 by the Web Services-Interoperability Organization. All rights reserved.

o Send HTTP

The Consumer receives the SOAP response:

• Transport Layer

o Receive HTTP

• SOAP Message Layer

o Process SOAP envelope

o Process SOAP body

• Data Layer

o Process XML. The data payload is processed according to the data model and dispatched
to the application

3.2.3 Flow Constraints

The following activities have the referenced constraints in this Usage Scenario.

• Write XML, as defined in Section 5.1

• Write SOAP envelope, as defined in section 5.3

• Write SOAP body, as define in Section 5.5

• Send HTTP, as defined in Section 5.9

• Receive HTTP, as defined in Section 5.10

• Process SOAP envelope, as defined in Section 5.4

• Process SOAP body, as defined in Section 5.6

• Process XML, as defined in Section 5.2

3.2.3.1 Errors and SOAP Faults

Errors that occur during SOAP processing are communicated with a SOAP Fault message, as per the
SOAP 1.1 specification. This scenario supports SOAP Faults through composition, that is, all the
constraints described in sections 3.2.3 and 3.3.4.1 apply, plus the additional constraints imposed upon
the following Activities.

The Web service Provider must abide by the following restrictions and guidelines from the Basic Profile:

• Behavior for fault generation: R2724, R2725

• Writing the soap:fault: R1000, R1001, R1004, R1031, R2742, R2743

• HTTP SOAPAction: R1119

• HTTP status codes: R1126

• Requirements for WSDL description: R2728, R2742, R2743, R2754

The Web service Consumer must follow the following restrictions and guidelines from the Basic Profile:

• Processing the soap:fault: R1002, R1003, R1016

3.2.3.2 SOAP Headers

 WS-I Usage Scenarios

14 April 2003 Page 19 of 39

© Copyright 2003 by the Web Services-Interoperability Organization. All rights reserved.

Use of a SOAP header is optional for this scenario. If it is used, it must follow the constraints for the Write SOAP
Header and Process SOAP Header activities, as defined in Sections 5.7 and 5.8, respectively.

3.2.4 Description Constraints: WSDL

The WSDL should have at least the following content within its definitions for the Synchronous
Request/Response Scenario. Not all sections are required, but if present in the WSDL, each should follow
the guidelines as presented below. General constraints on the WSDL are described in Section 5.11.
Other constraints imposed upon the WSDL by the Basic Profile are listed below.

3.2.4.1 types

This WSDL section is not required, and if present, will be dependent upon the specifics of the data
model.

Constraints on types are listed in Section 5.12.

3.2.4.2 messages

Message format will be dependent upon the data model (doc/literal or rpc/literal). At least two messages
must be defined: one input and one output. Optionally, a fault message may also be defined.

3.2.4.2.1 Document messages

Document message parts are composed from Schema element definitions (see R2204)

<wsdl:message …>

 <wsdl:part name=”..” element=”..”>

 <wsdl:part name=”..” element=”..”/>

</wsdl:message>

3.2.4.2.2 RPC messages

RPC message parts are composed from Schema type declarations (see R2203)

<wsdl:message …>

 <wsdl:part name=” “ type=”..” />

 <wsdl:part name=” “ type=”..”/>

</wsdl:message>

Constraints on messages are listed in Section 5.13.

3.2.4.3 portTypes

The request/response transmission primitive must be used. Grammar is:

<wsdl:portType ..>

<wsdl:operation …>

 <wsdl:input …/>

 <wsdl:output …/>

 </wsdl:operation>

</wsdl:portType>

 WS-I Usage Scenarios

14 April 2003 Page 20 of 39

© Copyright 2003 by the Web Services-Interoperability Organization. All rights reserved.

Constraints on portTypes are listed in Section 5.14.

3.2.4.4 binding

The wsdl:binding section must use the SOAP binding extension with HTTP transport. The same
operation defined in wsdl:portType must be used in the binding section.

<wsdl:binding …>

 <soap:binding style=”rpc|document” transport=http://schemas.xmlsoap.org/soap/http>
 <wsdl:input …>

 </wsdl:input>

 <wsdl:output …>

 </wsdl:output>

 </soap:binding>

</wsdl:binding>

Constraints on bindings are listed in Section 5.15.

3.2.4.5 port

The soap:address element must be specified along with the URL for the endpoint:

<wsdl:port>

 <soap:address location=”uri” />

</wsdl:port>

Constraints on port definitions are listed in Section 5.16.

3.2.5 UDDI

Advertisement of Web services patterned after this scenario adheres to the “Using WSDL in a UDDI
Registry, Version 1.07” Best Practice document. A uddi:tModel representing the Web service type
references the file containing the wsdl:binding for the synchronous message operation(s). The
uddi:bindingTemplate captures the service endpoint and references the uddi:tModel(s) for the Web
service type.

Advertising Web services in this way enables discovery using the inquiry patterns supported by the UDDI
Inquiry API set (see http://www.uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.pdf).
These include the browse pattern, the drill-down pattern and the invocation pattern.

General UDDI Constraints are listed in Section 5.17.

3.2.6 Security

This section identifies the threats most relevant to this Usage Scenario as described in Appendix 1 where
additional information on Basic Profile compliant countermeasures may also be found.

Additional constraints may apply if HTTPS is used to implement security. These are Basic Profile
requirements: R5000, R5001, R5010. Appendix 1 has additional guidelines on Security.

As of this writing no specific threat has been identified as being singularly relevant to this Usage
Scenario.

3.3 Basic Callback

 WS-I Usage Scenarios

14 April 2003 Page 21 of 39

© Copyright 2003 by the Web Services-Interoperability Organization. All rights reserved.

3.3.1 Description

The Basic Callback scenario facilitates a form of asynchronous message exchange for Web services. This
is accomplished through the composition of two synchronous request/response pairs. The messages are
related via correlation information that is provided by the Consumer. The Consumer also provides the
endpoint information for the callback service location to the Provider. The definition of the callback
service is defined by the Provider in the published Web service description and implemented by the
Consumer.

At runtime a Consumer sends the initial SOAP request in a request/response sequence to the Provider,
which in turn sends back an immediate acknowledgement of receipt. At a later point in time the Provider
will initiate the final request/response sequence to the Consumer containing the response data for the
initial request sent by the Consumer. The following diagram shows the high-level interactions between a
Consumer and a Provider in the Basic Callback Usage Scenario.

Figure 3-7 Basic Callback Sequence

High-level flow:

1. Consumer initiates the service by sending a SOAP message bound to an HTTP request to the
Provider (the “initial request”)

2. Provider acknowledges receipt via a SOAP message bound to an HTTP response to the Consumer
(the “initial response”)

3. Provider completes the exchange by sending a SOAP message bound to an HTTP request to the
Consumer with the results of the initial request (the “final request” or “callback”)

4. Consumer acknowledges receipt of the callback message with a SOAP message bound to an HTTP
response (the “final response”)

Assumptions:

• This scenario is a runtime sequence of events; it does not involve any design or deployment
activities.

• The data model, the application semantics, the callback correlation mechanism, and the transport
bindings are all agreed upon and implemented a priori to this scenario.

• All parts of this scenario are defined in conformance with the guidelines and recommendations of
the Basic Profile.

• This scenario is “composable”, that is, it may be used as a foundation for creating more complex
scenarios.

 WS-I Usage Scenarios

14 April 2003 Page 22 of 39

© Copyright 2003 by the Web Services-Interoperability Organization. All rights reserved.

3.3.2 Details

The Basic Callback scenario is built upon two correlated synchronous request/response interactions.
Since a Consumer and a Provider may have many outstanding requests, there needs to be a mechanism
for each party to unambiguously identify which callback goes with which initial request. This can be
achieved using some business data in the SOAP payload, such as a purchase order number, that can be
used to correlate the callback with the request, or through using some form of message id.

In order to invoke the callback service, the Consumer must communicate the callback endpoint to the
Provider. This can be conveyed at runtime in the initial SOAP message sent by the Consumer to the
Provider, during deployment, or using a discovery mechanism agreed to by both parties.

The Web service description for both the initial and final request/response pairs (i.e., portTypes) may be
defined in a single WSDL document. Although it is not a requirement to do so, placing them in the same
document will communicate the contract and the expectations on the client more effectively. In loosely
coupled situations where two businesses may not want to maintain a single document, the initial and
final request/response pairs should be described in separate WSDL documents. In either case,
portTypes for both the Provider and Consumer Web services shall be defined. The description MAY
contain ports for the Provider Web services, and DOES NOT contain defined ports for the Consumer Web
services. Since the final service address is not known beforehand, a WSDL port cannot be defined for the
final request/response portType. It is, instead communicated by the Consumer as described above.

3.3.3 Flow

The detailed flow for this scenario, using the activities defined in Section 2.2, is described below. Each
bulleted item represents the activities performed within one layer of the stack required to complete the
flow. The order of activities within a Consumer or Provider is not significant. Each activity has constraints
imposed upon it from the Basic Profile.

 WS-I Usage Scenarios

14 April 2003 Page 23 of 39

© Copyright 2003 by the Web Services-Interoperability Organization. All rights reserved.

Figure 3-8 Basic Callback Consumer Request

The Consumer initiates a SOAP request:

 WS-I Usage Scenarios

14 April 2003 Page 24 of 39

© Copyright 2003 by the Web Services-Interoperability Organization. All rights reserved.

• Data Layer

o Write XML. The payload is created according to the data model.

• SOAP Message Layer

o Write SOAP envelope

o [Write SOAP header (if correlation information is conveyed in this manner)]

o Write SOAP body

• Transport Layer

o Send HTTP

The Provider receives the initial SOAP request:

• Transport Layer

o Receive HTTP

• SOAP Message Layer

o Process SOAP envelope

o [Process SOAP header (if correlation information is conveyed in this manner)]

o Process SOAP body

• Data Layer

o Process XML. The data payload is processed according to the data model and dispatched
to the application

 WS-I Usage Scenarios

14 April 2003 Page 25 of 39

© Copyright 2003 by the Web Services-Interoperability Organization. All rights reserved.

Figure 3-9 Basic Callback Provider Acknowledgement

The Provider generates the acknowledgement (response) message:

• Data Layer

o Write XML. The payload is created according to the data model.

• SOAP Message Layer

o Write SOAP envelope

o Write SOAP body

• Transport Layer

 WS-I Usage Scenarios

14 April 2003 Page 26 of 39

© Copyright 2003 by the Web Services-Interoperability Organization. All rights reserved.

o Send HTTP

The Consumer receives the acknowledgement (response) message:

• Transport Layer

o Receive HTTP

• SOAP Message Layer

o Process SOAP envelope

o Process SOAP body

• Data Layer

o Process XML. The data payload is processed according to the data model and dispatched
to the application

 WS-I Usage Scenarios

14 April 2003 Page 27 of 39

© Copyright 2003 by the Web Services-Interoperability Organization. All rights reserved.

Figure 3-10 Basic Callback Provider Response

The Provider initiates a SOAP request:

 WS-I Usage Scenarios

14 April 2003 Page 28 of 39

© Copyright 2003 by the Web Services-Interoperability Organization. All rights reserved.

• Data Layer

o Write XML. The payload is created according to the data model.

• SOAP Message Layer

o Write SOAP envelope

o [Write SOAP header (if correlation information is conveyed in this manner)]

o Write SOAP body

• Transport Layer

o Send HTTP

The Consumer receives the SOAP request:

• Transport Layer

o Receive HTTP

• SOAP Message Layer

o Process SOAP envelope

o [Process SOAP header (if correlation information is conveyed in this manner)]

o Process SOAP body

• Data Layer

o Process XML. The data payload is processed according to the data model and dispatched
to the application

 WS-I Usage Scenarios

14 April 2003 Page 29 of 39

© Copyright 2003 by the Web Services-Interoperability Organization. All rights reserved.

Figure 3-11 Basic Callback Consumer Acknowledgement

The Consumer then generates the acknowledgement (response) message:

• Data Layer

o Write XML. The payload is created according to the data model.

• SOAP Message Layer

o Write SOAP envelope

o Write SOAP body

• Transport Layer

 WS-I Usage Scenarios

14 April 2003 Page 30 of 39

© Copyright 2003 by the Web Services-Interoperability Organization. All rights reserved.

o Send HTTP

The Provider receives the SOAP acknowledgement (response) message:

• Transport Layer

o Receive HTTP

• SOAP Message Layer

o Process SOAP envelope

o Process SOAP body

• Data Layer

o Process XML. The data payload is processed according to the data model and dispatched
to the application

3.3.4 Flow Constraints

The following activities have the referenced constraints in this Usage Scenario.

• Write XML, as defined in Section 5.1

• Write SOAP envelope, as defined in Section 5.3

• [Write SOAP header (when correlation information is conveyed in a SOAP header)], as defined in Section 5.7

• Write SOAP body, as define in Section 5.5

• Send HTTP, as defined in Section 5.9

• Receive HTTP, as defined in Section 5.10

• Process SOAP envelope, as defined in Section 5.4

• [Process SOAP header (when correlation information is conveyed in a SOAP header)], as defined in Section
5.8

• Process SOAP body, as defined in Section 5.6

• Process XML, as defined in Section 5.2

3.3.4.1 Errors and SOAP Faults

Constraints for Fault generation and behavior as described in the Synchronous Request / Response
Scenario 3.2.3.1 also apply to this scenario.

3.3.5 Description Constraints

For the Basic Callback scenario, the WSDL must have at least the following content within its definitions.
Not all sections are required, but if present in the WSDL, each should follow the guidelines as presented
below. The WSDL defined below is contained within a single document, and describes both the Initial
and the Final request/response sequences of the Basic Callback. Constraints imposed upon the WSDL by
the Basic Profile are also listed.

General constraints on the WSDL are described in Section 5.11. Other constraints imposed upon the
WSDL by the Basic Profile are listed below.

3.3.5.1 types

Application Data

 WS-I Usage Scenarios

14 April 2003 Page 31 of 39

© Copyright 2003 by the Web Services-Interoperability Organization. All rights reserved.

This section will be dependent upon the specifics of the data model and often contains correlation
information in addition to application data types.

3.3.5.2 messages

Message format will be dependent upon the data model (doc/literal or rpc/literal). The following
messages and parts are typically defined for this Usage Scenario:

• Initial request message

• Initial response message

• Final request message

• Final response message

3.3.5.2.1 Document and RPC style

Below are some general issues concerning differences between Document and RPC style messages. For
simplicity all required messages for this scenario have been defined as Document style, but this is not a
requirement.

Document messages

Document message parts are composed from Schema element definitions (see R2204)
<wsdl:message …>

 <wsdl:part name=”InitialRequest” element=”..”>

</wsdl:message>

RPC messages

RPC message parts are composed from Schema type declarations (see R2203)

However, parts to be used in SOAP headers or faults MUST be defined as elements
<wsdl:message …>

 <wsdl:part name=”InitialRequest“ type=”..” />

</wsdl:message>

Constraints on messages are listed in Section 5.13.

3.3.5.3 portTypes

The request/response transmission primitive must be used for both the Initial and Final sequences.

3.3.5.3.1 Provider

<wsdl:portType name="ProviderPortType">

 <wsdl:operation name="…">

 <wsdl:input…

 </wsdl:input>

 <wsdl:output…

 </wsdl:output>

 </wsdl:operation>

 WS-I Usage Scenarios

14 April 2003 Page 32 of 39

© Copyright 2003 by the Web Services-Interoperability Organization. All rights reserved.

</wsdl:portType>

3.3.5.3.2 Consumer
<wsdl:portType name="ConsumerPortType">

 <wsdl:operation name="…">

 <wsdl:input…

 </wsdl:input>

 <wsdl:output…

 </wsdl:input>

 </wsdl:operation>

</wsdl:portType>

Constraints on portTypes are listed in Section 5.14.

3.3.5.4 binding

The wsdl:binding section must use the SOAP binding extension with HTTP transport. The same
operation defined in wsdl:portType must be used in the binding section. Two bindings will be defined,
one for the Initial sequence, one for the Final.

3.3.5.4.1 Provider
<wsdl:binding name="ProviderSoapBinding" type="tns:ProviderPortType">

<soap:binding style="document|rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

<wsdl:operation name="…">

 <soap:operation/>

 <wsdl:input…

 </wsdl:input>

 <wsdl:output…

 </wsdl:output>

</wsdl:operation>

</wsdl:binding>

3.3.5.4.2 Consumer
<wsdl:binding name="ConsumerSoapBinding" type="tns:ConsumerPortType">

<soap:binding style="document|rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

<wsdl:operation name="submitFinalReq">

 <soap:operation/>

 <wsdl:input…

 </wsdl:input>

 <wsdl:output…

 </wsdl:output>

</wsdl:operation>

</wsdl:binding>

Constraints on bindings are listed in Section 5.15.

3.3.5.5 port

 WS-I Usage Scenarios

14 April 2003 Page 33 of 39

© Copyright 2003 by the Web Services-Interoperability Organization. All rights reserved.

Only one port will be defined: that for the Initial Request/Response. The Final sequence has an
unspecified port-binding. The soap:address element must be specified along with the URL for the
endpoint:
<wsdl:port>

 <soap:address location=”uri” />

</wsdl:port>

Constraints on port definitions are listed in Section 5.16.

3.3.6 UDDI

There are two Web service implementations involved in this Usage Scenario, but only the Initial Web
service is advertised in UDDI. The Final Web service is not discoverable because the callback endpoint
must be known to and accessible by the initiator of the Initial request. Communicating the callback
endpoint in the initial request accomplishes this.

Advertisement of Web services patterned after the Initial sequence in this scenario adheres to the “Using
WSDL in a UDDI Registry, Version 1.07” Best Practice document. A uddi:tModel representing the Web
service type references the containing document for the wsdl:binding of the Initial operation. The
wsdl:binding corresponding to this portion of the Web service type is referenced using an xpointer
based fragment identifier appended to the WSDL file URL. The uddi:bindingTemplate for the Initial
sequence captures the service endpoint and references the uddi:tModel(s) for the Web service type.

Because the Final sequence in this scenario occurs between the two parties that participate in the Initial
sequence, no advertisement or discovery of this sequence is desired or necessary.

Advertising Basic Callback Web services in this way enables discovery using the inquiry patterns
supported by the UDDI Inquiry API set (see http://www.uddi.org/pubs/ProgrammersAPI-V2.04-
Published-20020719.pdf). These include the browse pattern, the drill-down pattern and the invocation
pattern.

General UDDI Constraints are listed in Section 5.17.

3.3.7 Security

This section identifies the threats most relevant to this Usage Scenario as described in Appendix 1 where
additional information on Basic Profile compliant countermeasures may also be found.

Additional constraints may apply if HTTPS is used to implement security. These are Basic Profile
requirements: R5000, R5001, R5010. Appendix 1 has additional guidelines on Security.

As of this writing no specific threat has been identified as being singularly relevant to this Usage
Scenario, though Replay is being investigated as a potential candidate.

 WS-I Usage Scenarios

14 April 2003 Page 34 of 39

© Copyright 2003 by the Web Services-Interoperability Organization. All rights reserved.

4 Appendix 1 – Security
This section details common Web service threats and suggests possible countermeasures that are
compliant with the Basic Profile. The countermeasures detailed here are best applied through a risk
assessment of your Web service application.

This information presented here is not intended to be an exhaustive or encyclopedic treatment of the
security issues confronting Web services developers. Rather, it is designed to provide an intermediate
assessment of security issues that briefly explores the intersection between traditional security issues
and their manifestation in the Web services architecture.

4.1 Authentication

Authentication is a mechanism or a protocol that demonstrates proof of an asserted identity. Using an
authentication mechanism, a Web service can draw conclusions about the sender of a request or
response message, and then act on the message. Many types of authentication mechanisms and
protocols have been developed, including password schemes, Secure Sockets Layer (SSL), Kerberos,
and public key infrastructure. Each mechanism has advantages and limitations. With respect to
interoperability, each mechanism introduces a variety of challenges. Web services can usually rely on
the software platform to provide interoperable transport authentication. Additionally, Web services may
wish to share authentication information across domains to provide single sign-on within a community of
cooperating business entities.

Authentication requirements are usually asymmetrical between service requestors and service providers.
Therefore, authentication for Web services can be further subdivided as below.

4.1.1 Request Authentication

Threat

The threats to a Web service that does not authenticate users include access to data or resources by
unauthorized entities, and ‘man-in-the-middle attacks’. In man-in-the-middle attacks, an unauthorized
entity intercepts messages between requestor and responder, enabling eavesdropping and data
manipulation. In very sophisticated Web services environments, a Web service provider may not be able
to authenticate all parties involved in a transaction, and may therefore be required to delegate trust to
other Web services.

Since Web services may rely on directory services to find providers of services (such as UDDI),
authentication must be ensured in certain processes such as consulting UDDI registries or downloading
WSDL files. If authentication is not required by a directory, a relatively easy attack would be to falsify a
WSDL file, causing reliant Web services to bind to improper ports.

Countermeasure

A Web service SHOULD authenticate the sender of a request. Some specific situations in which Web
services should authenticate requests include those in which underlying state is changed, in which there
is a charge for using the service, or where the information returned by the service is privileged.

Authentication of the service requester is the appropriate countermeasure. Client authentication can be
performed using agreed upon digital certificates in the client authentication piece of an SSL/TLS
exchange. The digital certificates exchanged during the SSL handshake must chain to a certificate
authority agreed upon by both client and server.

4.1.2 Response Authentication

Threat

 WS-I Usage Scenarios

14 April 2003 Page 35 of 39

© Copyright 2003 by the Web Services-Interoperability Organization. All rights reserved.

An attack on a service requester is one that interposes a false or ‘spoofed” service that supplies
responses resembling those provided by the expected service. For example, a “man-in-the-middle”
might substitute a false response message for a genuine response, leading to request/response
mismatches.

Countermeasure

Authentication of the service is the appropriate countermeasure. An SSL/TLS connection can provide
server authentication and is typically sufficient protection from Web service provider spoofing for point-
to-point transactions.

4.2 Authorization

Authorization is the process of determining the capabilities granted to an entity by a service provider or
another trusted entity. While authentication determines which entities can access a Web service,
authorization determines which features of that Web service can be accessed by the authenticated
entity. In some cases even authenticated entities must be restricted to a subset of functions provided by
a Web service.

4.2.1 Request Authorization

Threat

Unauthorized access to computational resources or protected data.

Countermeasure

Apply authorization mechanisms. Web services requests are fulfilled based on the authorization assigned
to a particular requestor by the service provider. A Web service may need to communicate its
authorization requirements through a policy.

A simple Web service may have one authorization level: i.e., I will execute process X for any user
authenticated using a recognized token. However, more sophisticated mechanisms may be required for
Web services designed to service a range of consumers.

4.3 Confidentiality
Threat

A compromise of privileged information through unauthorized access. In a messaging environment (as
opposed to a session environment) it is important to evaluate the message protection characteristics of
a Web service, because a Web service may not know the ultimate destination or the full route of the
data being sent. Intermediaries may be traversed and if the data is unprotected, might read the
confidential contents of a message, or they might be able to deduce confidential information by the
mere fact that a particular message (or a message of a certain type, or messages in a certain
frequency) was sent.

Countermeasure

Encryption is the primary defense against a breach of confidentiality. How encryption is applied can vary
widely. The SSL/TLS protocol encrypts messages for the duration of the session. . However, at each
end-point, the message will be fully decrypted. An exception to this situation is SSL Proxy tunneling. In
which a client proxy opens a connection to a secure server, copying data in both directions without
intervening in the secure transaction.

There are ways to address the problem of end-to-end confidentiality while remaining compliant, though
out of scope, of the Basic Profile. As an example, XML Encryption can be used to selectively encrypt
elements or the entire message. There are many configurations, but one is to have the SOAP

 WS-I Usage Scenarios

14 April 2003 Page 36 of 39

© Copyright 2003 by the Web Services-Interoperability Organization. All rights reserved.

implementation encrypt the message payload, while leaving other information "in the clear" in the SOAP
header.

4.4 Data Integrity
Threat

Loss of data integrity is the unauthorized modification of a request or response. The threat to Web
services is the malicious alteration or the accidental corruption of data.

Countermeasure

Messages sent using SSL/TLS have guaranteed data integrity for the duration of the exchange.

Another technique compliant, yet out of scope, with the Basic Profile is the use of digital signatures and
message digests to provide proof of data integrity using XML Digital Signature. These can be applied to
complete XML messages, or to portions of XML documents according to the XML Digital Signature
specification.

4.5 Replay
Threat

A basic attack on a Web service is an attempt to re-use a once valid message. Certain elements of a
Web services message, such as a security token, can also be reused as part of a different message to
give the impression of a valid request or response.

Countermeasure

Replay attacks can be addressed by using message timestamps and caching, and through the use of
universally unique identifiers on all messages.

4.6 Logging and Auditing

One of the best countermeasures for any of the above security issues is a robust auditing/logging
mechanism. In combination with authentication mechanisms, auditing and logging mechanisms can
provide chains of evidence that permit runtime infractions of trust policies to be remedied by the offline
trust infrastructure of business agreements and contractual law.

4.7 Other Risks

Like any networked application, Web services are exposed to standard network security vulnerabilities
such as:

• Unauthorized users gaining direct access to network resources

• Virus or Trojan horse programs being transmitted within otherwise valid XML messages

• Misconfiguration or improper coordination of internal resources by a Web services provider.

• Exploitation of known weaknesses

• Denial of Service attacks

5 Appendix 2 – Constraints
This section provides a mapping of constraints listed in the Basic Profile to each of the flow activities
identified in Section 2 and within each scenario. In carrying out each activity, the listed constraints
should be consulted in the Basic Profile to check for compliance with the details of the constraint.

 WS-I Usage Scenarios

14 April 2003 Page 37 of 39

© Copyright 2003 by the Web Services-Interoperability Organization. All rights reserved.

5.1 Write XML

• XML Representation of SOAP Messages: R4001, R1008, R1009, R1010, R1012, R1013

5.2 Process XML

• XML Representation of SOAP Messages: R4001, R1008, R1009, R1010, R1012, R1013, R1015,
R1017

5.3 Write SOAP Envelope

• Envelope structure: R1011, R2714

5.4 Process SOAP Envelope

• Envelope requirements: R1011, R1015, R1028, R2714

5.5 Write SOAP Body

• XML Representation of SOAP Messages: R1005, R1006, R1007, R1011, R1014, R2735, R2737

• The SOAP Processing Model: R1025, R1029, R1030

• RPC messages: R2729

5.6 Process SOAP Body

• XML Representation of SOAP Messages: R1005, R1006, R1007, R1014, R1017, R1028, R1029,
R1030

5.7 Write SOAP Header

• XML Representation of SOAP Messages: R4001, R1005, R1008, R1009, R1010, R1012, R1013,

• The SOAP Processing Model: R1027

• Using SOAP in HTTP: R1109

• Header blocks: R2738, R2739, R2751, R2752, R2753

5.8 Process SOAP Header

• XML Representation of SOAP Messages: R1012, R1005, R1008, R1009, R1010, R1012, R1013,
R1015, R1017,

• The SOAP Processing Model: R1025, R1026, R1027, R1028, R1029, R1030,

5.9 Send HTTP

The following constraints apply to both HTTP and HTTPS.

• General: R1108, R1140, R1141, R1132

• Status code: R1106, R1107, R1111, R1112, R1113, R1114, R1115, R1116, R1124, R1125,
R1126, R1130

• SOAPAction Header: R1109, R2713, R2744, R2745

• Cookies: R1120, R1121, R1122, R1123

 WS-I Usage Scenarios

14 April 2003 Page 38 of 39

© Copyright 2003 by the Web Services-Interoperability Organization. All rights reserved.

5.10 Receive HTTP

The following constraints apply to both HTTP and HTTPS.

• General: R1110, R1140, R2746

• Status code: R1107, R1111, R1112, R1113, R1114, R1115, R1116, R1124, R1125, R1126,
R1130, R1131

• SOAPAction Header: R1119

• Cookies: R1120, R1121, R1122, R1123

5.11 General WSDL Constraints

• Description of an Instance: R0001

• Importing documents into WSDL: R2001, R2002, R2003, R2004, R2005, R2007, R2008, R2009,
R2010, R2011

• Constraints on the overall structure of WSDL: R2020, R2021, R2022, R2023, R2024, R2025,
R2026, R2027, R2028, R4002, R4003, R4004

• WSDL Extensions: R2747, R2748

5.12 Constraints on WSDL types

• Constraint on use of QNames: R2101, R2102

• Constraint on declaration of array types: R2110, R2111, R2112, R2113

• Usage of XML Schema: R2105, R2114, R2800, R2801

5.13 Constraints on WSDL messages

• Constraints relating to bindings and parts: R2201, R2202, R2203, R2204, R2206, R2207, R2208,
R2210

• Constraints on portType: R2209

5.14 Constraints on WSDL portTypes

• Wire representation of the message: R2301, R2302, R2305, R2306, R2710, R2712

• Constraints on operations: R2303, R2304

5.15 Constraints on WSDL Bindings

• Structure: R2029

• Allowed bindings: R2401, R2700

• Transport constraints: R2701, R2702

• Constraints on soap:style: R2705

• Constraints on soap:use: R2706, R2707

• Relationship to portTypes: R2709, R2718

• Using SOAPAction: R2713

• Using soap:namespace attribute: R2716, R2717, R2726

 WS-I Usage Scenarios

14 April 2003 Page 39 of 39

© Copyright 2003 by the Web Services-Interoperability Organization. All rights reserved.

• Faults and header constraints: R2719, R2720, R2721, R2722, R2723, R2740, R2741, R2749

5.16 Constraints on WSDL Port

• Allowed bindings: R2711

5.17 General UDDI constraints

• Description of an Instance: R0001

• Constraints on binding templates: R3100

• Constraints on tModels: R3002, R3003, R3005, R3010, R3011

6 References
[1] WS-I Basic Profile version 1.0 from www.ws-i.org.

