
© Copyright 2002 by the Web Services-Interoperability Organization. All rights reserved. Page 1 of 44

Testing Tools V0.91 User Guide

Document Type:

Technical User Guide

Editor:

Brian Macker, Computer Associates

Last Edit Date:

4/1/2003 11:56 AM

Document Status:

Version 0.91

This document is a Working Group Draft; it has been accepted by the Working Group as
reflecting the current state of discussions. It is a work in progress, and should not be
considered authoritative or final; other documents may supersede this document.

© Copyright 2002 by the Web Services-Interoperability Organization. All rights reserved. Page 2 of 44

Notice
The material contained herein is not a license, either expressly or impliedly, to any intellectual
property owned or controlled by any of the authors or developers of this material or WS-I. The
material contained herein is provided on an "AS IS" basis and to the maximum extent permitted
by applicable law, this material is provided AS IS AND WITH ALL FAULTS, and the authors
and developers of this material and WS-I hereby disclaim all other warranties and conditions,
either express, implied or statutory, including, but not limited to, any (if any) implied warranties,
duties or conditions of merchantability, of fitness for a particular purpose, of accuracy or
completeness of responses, of results, of workmanlike effort, of lack of viruses, and of lack of
negligence. ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET
ENJOYMENT, QUIET POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-
INFRINGEMENT WITH REGARD TO THIS MATERIAL.

IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR WS-I BE
LIABLE TO ANY OTHER PARTY FOR THE COST OF PROCURING SUBSTITUTE
GOODS OR SERVICES, LOST PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY
INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR SPECIAL DAMAGES
WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING IN
ANY WAY OUT OF THIS OR ANY OTHER AGREEMENT RELATING TO THIS
MATERIAL, WHETHER OR NOT SUCH PARTY HAD ADVANCE NOTICE OF THE
POSSIBILITY OF SUCH DAMAGES.

License Information
Use of this WS-I Material is governed by the WS-I Test License at http://www.ws-
i.org/docs/license/test_license.htm. By downloading these files, you agree to the terms of this
license.

Feedback
The Web Services-Interoperability Organization (WS-I) would like to receive input, suggestions
and other feedback ("Feedback") on this work from a wide variety of industry participants to
improve its quality over time.

By sending email, or otherwise communicating with WS-I, you (on behalf of yourself if you are
an individual, and your company if you are providing Feedback on behalf of the company) will
be deemed to have granted to WS-I, the members of WS-I, and other parties that have access to
your Feedback, a non-exclusive, non-transferable, worldwide, perpetual, irrevocable, royalty-free
license to use, disclose, copy, license, modify, sublicense or otherwise distribute and exploit in
any manner whatsoever the Feedback you provide regarding the work. You acknowledge that
you have no expectation of confidentiality with respect to any Feedback you provide. You
represent and warrant that you have rights to provide this Feedback, and if you are providing
Feedback on behalf of a company, you represent and warrant that you have the rights to provide
Feedback on behalf of your company. You also acknowledge that WS-I is not required to review,
discuss, use, consider or in any way incorporate your Feedback into future versions of its work.
If WS-I does incorporate some or all of your Feedback in a future version of the work, it may,
but is not obligated to include your name (or, if you are identified as acting on behalf of your
company, the name of your company) on a list of contributors to the work. If the foregoing is not

© Copyright 2002 by the Web Services-Interoperability Organization. All rights reserved. Page 3 of 44

acceptable to you and any company on whose behalf you are acting, please do not provide any
Feedback.

Feedback on this document should be directed to wsi-test-comments@ws-i.org.

Acknowledgement from the Editor: My thanks to all the members of the Testing Work Group
who developed the tool specifications and contributed valuable input and comments on this User
Guide.

Table of Contents:

1 Overview...4

1.1 General Testing Process and Architecture ..4
1.2 Q & A on What to Expect from the Testing Tools...6

2 Installation...8
2.1 System Requirements ...8
2.2 Installation Procedure..8

2.2.1 C# Version...8
2.2.2 Java Version..8

3 Using the Monitor Tool ..9
3.1 Configuration ...9
3.2 Running the Monitor ..12

3.2.1 Executing the C# Version of the Monitor ..12
3.2.2 Executing the Java Version of the Monitor ...12
3.2.3 How to Deploy the Monitor...13

3.3 The Monitor Output..14
3.3.1 The Message Log File ...14

4 Using the Analyzer Tool ..19
4.1 Configuration ...19
4.2 Running the Analyzer ..26

4.2.1 Executing the C# Version of the Analyzer ..26
4.2.2 Executing the Java Version of the Analyzer ...26
4.2.3 Analyzer Tool Command Line Syntax ..26

4.3 Analyzer Input Material ..27
4.3.1 Types of Input ..27
4.3.2 Definitions..27
4.3.3 Cases where incomplete input is provided ...27

4.4 The Test Assertions Document..30
4.4.1 Test Assertion representation ..30
4.4.2 Term Definitions...30
4.4.3 How the Test Assertions are processed...31

4.5 The Profile Conformance Report ...33
4.5.1 Example of Conformance Report In XML Format...33
4.5.2 Conformance Report In HTML Format...40

© Copyright 2002 by the Web Services-Interoperability Organization. All rights reserved. Page 4 of 44

1 Overview

1.1 General Testing Process and Architecture

The Web Services Interoperability Organization (WS-I) has developed testing tools that evaluate
Web services conformance to the Basic Profile. These tools test Web service implementations
using a non-intrusive, black box approach. The tools focus is on the interaction between a Web
service and user applications.

Figure 1 - Testing Tools Architecture.

The testing infrastructure is comprised of the Monitor and the Analyzer (see Figure 1) and a
variety of supporting files:

© Copyright 2002 by the Web Services-Interoperability Organization. All rights reserved. Page 5 of 44

• Monitor – This is both a message capture and logging tool. The interceptor captures the
messages and the logger re-formats them and stores them for later analysis in the message
log. The monitor is implemented using a man in the middle approach to intercept and record
messages.

• Analyzer – This is an analysis tool that verifies the conformance of Web Services artifacts to

the Basic Profile. For example, it analyzes the messages sent to and from a Web service, after
these have been stored in the message log by the Monitor.

• Configuration Files – These are XML files used to control the execution of the Testing

Tools:
o Monitor Configuration File – controls the execution of the monitor
o Analyzer Configuration File – controls the execution of the analyzer
o Test Assertion Document – defines the test assertions that will be processed by the

analyzer

Other files or data artifacts will be accessed, which are not part of the test framework, but
dependent on the Web Service to be tested:

• Web Service artifacts – these inputs to the Analyzer are target material for testing, and will

be reported on:
o Message Log – contains the monitoring trace of messages captured at transport level.
o WSDL definitions - contains the definitions related to the Web Service
o UDDI entries - contains references to Web Service definitions, as well as bindings.

• Generated Files – These are XML files produced by Testing Tools, that are specific to the

Web Service being tested:
o Message Log – (also a “Web Service artifact”)
o Conformance Report – contains the complete conformance analysis from the

specified inputs.

© Copyright 2002 by the Web Services-Interoperability Organization. All rights reserved. Page 6 of 44

1.2 Q & A on What to Expect from the Testing Tools

Question: Can the testing tools certify that a Web Service is conforming to the Profile?
Answer: The tools can only verify the conformance of Web Service artifacts that are produced
during a testing session. Some artifacts belong to the definition of the Web Service (WSDL);
some others result from the observable behavior of the Web Service at run-time. It is rather
difficult to test all possible behaviors that a Web Service can exhibit, mostly because exercising
these behaviors is application-dependent and requires an application-level understanding of the
Web Service. For these reasons, the Testing WS-I working group has not attempted to provide
certification criteria. Indeed, using certification criteria that are too general or incomplete will
not guarantee interoperability for every use case, and therefore a certification stamp would have
little meaning. Instead, the tools are intended to observe and verify the messages produced
during an interaction, possibly in a real deployment environment (because the tools are non-
intrusive). The tools can also be used at development time, to verify that Web Service definitions
are profile-conforming. The testing tools are then an indicator of conformance of a Web Service
to the Basic Profile, based on the artifacts produced. In turn, this is an indicator of
interoperability with other business partners who also have tested as conforming to the Basic
Profile.

Question: Can the testing tools verify all the requirements of the Basic Profile?
Answer: No. Some requirements of the WS-I basic profile cannot be easily tested, at least not by
using a non-intrusive testing framework like the one described here. This is another reason why
the tools should be defined more as an indicator of conformance, rather than as certification
tools. However, by addressing requirements that concern the run-time interaction between a Web
Service and another party, the tools provide a powerful indicator of the ability of this Web
Service to interoperate with any external party known to also comply with the Basic Profile.

Question: How can we be sure that all the operations of a Web Service have been covered in the
testing?
Answer: Because the test framework – in the current version – does not include a Test Driver, a
complete coverage of all the operations will rely on the client program involved in the testing of
the Web Service, which is either ad-hoc, or is a real application in deployment over which the
test operator does not have much control. A Test Driver will require advanced parameterization
so that it can exercise the testing of all the (request-response and one-way) operations of a Web
Service, for any Web Service. Even so, such a driver may not be able to trigger an exhaustive set
of behaviors. Finally, not all ports in a Web Service may be required to be conforming.

Question: What are some practical situations where the testing tools show value to Web Services
users or vendors?
Answer: An industry may define industry-specific Web Services – e.g. purchase order
submission, request for product information - and specific usage scenarios. This industry may
require that the Web Service, when used according to these expected interaction scenarios,
exhibits a profile-conforming behavior, as verified by WS-I testing tools. In order to achieve this,
this industry will likely define a specific test driver for its Web Services. By doing so, this
industry has effectively defined an industry-specific test harness and certification criterion for

© Copyright 2002 by the Web Services-Interoperability Organization. All rights reserved. Page 7 of 44

interoperability, based on the Basic Profile. If such a Web Service passes the tests, a vendor in
this industry can claim that it is interoperable with any user application, provided that the user
also complies with the Basic Profile, and exercises the expected usage scenarios.
Another scenario shows value for interoperability trouble shooting: a client application may fail
to interoperate with a Web Service, although both claim to be conforming to the Basic Profile.
Because the testing tools can monitor messages from both interacting parties, the tools can be
used to diagnose a failure to interoperate, and to identify the cause: either the client application
or the Web Service may exhibit non-conforming behavior during this particular interaction. This
will help determine responsibilities.

Question: Is it acceptable for a Web Service to have some operations conforming to the Profile,
and some other not conforming?
Answer: Yes. The Profile requirements are not defined at Service level, but at a lower level,
typically at WSDL port level. Some requirements are about operations, or bindings. A Web
Service may have some of its ports using the profile-conforming SOAP binding, some other port
using a non-conforming SOAP binding, and some ports using a non-SOAP binding. Yet, some
business users may only be interested in interoperating with these ports that are Profile-
conforming. Therefore the testing tools will be able to assess the conformance of a Web Service
at port level. This will simply require exercising this port only, during a monitoring session. (As
well as targeting this port only when testing the WSDL file.)

Question: Will the WS-I Test Framework also support functional testing of the Web Service?
Answer: This is outside of the scope of conformance testing to the Basic Profile. Such testing
would involve knowledge of the application semantics that is specific to each Web Service. The
Monitor developed by the Test working group could however be reused – for example by the
Sample Application working group – to provide the message capture necessary to such testing.

Question: Are there some restrictions in using the testing tools?
Answer: This version of the Monitor will not handle secure connections. In particular, the
current version of the Monitor will not handle SSL. This does not preclude one from using SSL
with the Basic Profile, but SSL traffic cannot be captured in the current version of Monitor. To
add SSL capability to the Monitor, the tool would have to be coded to handle SSL handshakes as
well as to hold its own server certificate. SSL is specifically designed to thwart man-in-the-
middle attacks, which the current design of the monitor requires.

© Copyright 2002 by the Web Services-Interoperability Organization. All rights reserved. Page 8 of 44

2 Installation

2.1 System Requirements

Both the Monitor and Analyzer tools are available in C# and Java versions from the WS-I web
site. The requirements for each are:

• C# - The Microsoft .NET Framework release 1.1 “redistributable final beta” must be
installed. This can be obtained from the Microsoft download web site at:
http://www.microsoft.com/downloads

• Java – The Java 2 Runtime Environment release 1.3.1 or later must be installed. This
can be obtained from the Java web site at http://java.sun.com/j2se/downloads.html

2.2 Installation Procedure
The WSI Test tools are available for download from www.ws-i.org.

2.2.1 C# Version
Unzip the installation package into a working directory.

2.2.2 Java Version
Unzip the installation package into a working directory. Before running any of the tools, you
must set the WSI_HOME environment variable to the location of the installed files.

 Example: set WSI_HOME=c:\wsi-test-tools

In the example above, the root directory of the directory structure is on the C drive in a directory
called wsi-test-tools.

© Copyright 2002 by the Web Services-Interoperability Organization. All rights reserved. Page 9 of 44

3 Using the Monitor Tool

The Monitor is implemented with a “man in the middle” approach so that it can intercept all the
SOAP messages between the requestor and the service. The monitor configuration file controls
the operation of the monitor and defines the parameters to ensure the SOAP messages are
properly routed.

3.1 Configuration
The configuration file is an XML document that provides the key parameters for the monitoring
tool.

Suppose that an attempt is being made to monitor two web service providers being accessed by
some requestor application. In order to insert the monitor between the requestor and web service
some method of redirection is required. In this example the choice is made to modify the
requestor to access the monitor instead. Further suppose that the original web services were
located at http://www.coldrooster.com port 80 and http://www.tempuri.com port 80 and that
these will be mapped to Monitor ports 9090 and 8080 respectively. Then the requestor
application will need to be modified to redirect its requests to the proper Monitor ports. Once this
is done the following configuration file (Figure 2) will accomplish the redirection:

<?xml version="1.0" encoding="utf-8" ?>

<wsi-monConfig:configuration

 xmlns:wsi-common="http://www.ws-i.org/testing/2003/03/common/"

 xmlns:wsi-monConfig=

 "http://www.ws-i.org/testing/2003/03/monitorConfig/">

 <wsi-monConfig:comment>This is a comment</wsi-monConfig:comment>

 <wsi-monConfig:logFile replace="true" location=”c:\traceLog.xml”>

 <wsi-common:addStyleSheet href="../common/xsl/messageLog.xsl"/>

 </wsi-monConfig:logFile>

 <wsi-monConfig:logDuration>900</wsi-monConfig:logDuration>

 <wsi-monConfig:cleanupTimeoutSeconds>120</wsi-monConfig:cleanupTimeoutSeconds>

 <wsi-monConfig:manInTheMiddle>

 <wsi-monConfig:redirect>

 <wsi-monConfig:comment>Redirect for port 9090</wsi-monConfig:comment>

 <wsi-monConfig:listenPort>9090</wsi-monConfig:listenPort>

 <wsi-monConfig:schemeAndHostPort>http://www.coldrooster.com</wsi-

monConfig:schemeAndHostPort>

 <wsi-monConfig:maxConnections>1000</wsi-monConfig:maxConnections>

 <wsi-monConfig:readTimeoutSeconds>30</wsi-monConfig:readTimeoutSeconds>

 </wsi-monConfig:redirect>

 <wsi-monConfig:redirect>

© Copyright 2002 by the Web Services-Interoperability Organization. All rights reserved. Page 10 of 44

 <wsi-monConfig:comment> Redirect for port 9090</wsi-monConfig:comment>

 <wsi-monConfig:listenPort>8080</wsi-monConfig:listenPort>

 <wsi-monConfig:schemeAndHostPort

 >http://www.tempuri.org:80</wsi-monConfig:schemeAndHostPort>

 <wsi-monConfig:maxConnections

 >1000</wsi-monConfig:maxConnections>

 <wsi-monConfig:readTimeoutSeconds

 >30</wsi-monConfig:readTimeoutSeconds>

 </wsi-monConfig:redirect>

 </wsi-monConfig:manInTheMiddle>

</wsi-monConfig:configuration>

Figure 2 - Sample Monitor Config File.

The schema for the configuration file can be found in the specification or relative to your
working directory at wsi-test-tools\common\schemas.
The sample configuration file above instructs the monitor to do the following things:

1. Log all messages to a file named c:\traceLog.xml. Replacing any existing file.
2. Set the duration of the testing session to 900 seconds
3. Run a man in the middle listener.
4. Open up listener connections on port: 9090 and 8080.
5. Forward any traffic received on port 9090 to www.coldrooster.com, port 80.

Note: port 80 is the default and is not specified
6. Forward any traffic received on port 8080 www.tempuri.org, port 80.
7. Allow up to 1000 connections on ports 9090 and 8080.
8. Set the timeout value for a connection for ports 9090 and 8080 to 30 seconds.
9. Set the duration of the testing session to 900 seconds.

The definitions of the elements in the configuration file are as follows:

Element Description Attributes

Configuration Root element for the configuration file. [None]

Comment Provides descriptive information about the monitor
configuration document and does not affect
execution. May be used at the configuration and
redirect levels.

[None]

logFile Identifies the file that will recieve the serialized
XML output and optionally an XML style sheet.

Note: The valid values for the replace attribute are:

• true – the file is deleted at startup and a new
file is created

• false – (default) the monitor will fail to start
and issue an error message

• replace
Controls behavior if the
logFile already exists.

• location
Identifies the name of
the file that will contain
the serialized XML.

© Copyright 2002 by the Web Services-Interoperability Organization. All rights reserved. Page 11 of 44

Element Description Attributes

wsi-common:
addStyleSheet

Indicates if a XML [3] style sheet reference should
be added to the output trace log.
Note: If this element is not specified, then the
following comment line will be inserted in the report
file after the XML declaration statement:
<!-- ?xml-stylesheet type="text/xsl"
href="..\common\xsl\traceLog.xsl"? -->

• href
The location of the style
sheet..

• type
The content type for the
style sheet. The default for
this attribute is “text/xsl”.

• title
Advisory information about
the style sheet.

• media
Intended destination
medium.

• charset
Character encoding for the
style sheet.

• alternate
Indicates use of alternate
style sheet.

logDuration Identifies the number of seconds that the monitor
will accept new client connections. After this many
seconds, the monitor stops accepting any new client
connections, and will write the log file..

[None]

cleanupTimeoutSeconds Once logDuration time ends, the monitor begins to
shutdown and accepts no new connections. To allow
any existing conversations to finish, the monitor
leaves the active ports alive for the number of
seconds set in cleanupTimeoutSeconds. When this
period ends, all ports are shut down.

[None]

manInTheMiddle Containing element for any manInTheMiddle port
monitors.

[None]

redirect The elements that define where the monitor will
listen for traffic and how it will forward that traffic.
Specify one or more as required.

[None]

listenPort Tells the manInTheMiddle which port to listen on. [None]

schemeAndHostPort When traffic is received on listenPort, it is sent to the
URL specified here. The URL can be specified as
either:
• An HTTP URL as specified in RFC1738 [2],

section 3.3:
http://<host>:<port>/<path>?<searchpart>

• A subset form:
http://<host>:<port>

In both cases the port is optional and defaults to 80.

[None]

maxConnections Specifies the maximum number of connections that
the port will queue up before it begins refusing
connections.

[None]

readTimeoutSeconds Specifies how long a listenPort should wait for a read
operation before assuming that the connection timed
out and releasing the connection. This timeout occurs
when no data has been received by the client or
server during this duration. If either end does send

[None]

© Copyright 2002 by the Web Services-Interoperability Organization. All rights reserved. Page 12 of 44

Element Description Attributes

data, then neither connection is assumed to have
timed out.

In this release, the monitor and analyzer are only designed to handle HTTP traffic. The full
monitor specification is available from www.ws-i.org.

3.2 Running the Monitor

3.2.1 Executing the C# Version of the Monitor
To run the message monitor (from the bin directory):

monitor [-config <configuration_file>]

Example:
cd <working-directory>\wsi-test-tools\cs\bin
monitor -config ..\samples\monitorConfig.xml

Note: If no configuration file is defined, the monitor will default to monitorConfig.xml file in the
current directory. You must either wait for the logDuration time to expire or manually exit the
monitor to properly close and complete the monitor log file. To manually exit, press <Ctrl-C>.

3.2.2 Executing the Java Version of the Monitor
To run the message monitor:

 bin\Monitor -config <configFilename>

 Example:
 cd <working-directory>\wsi-test-tools\java

bin\Monitor -config samples\monitorConfig.xml

Note: You must either wait for the logDuration time to expire or manually exit the monitor
session to close and complete the monitor log file. To manually exit, type “exit” at the command
prompt and press Enter, or optionally press <Ctrl-C>

© Copyright 2002 by the Web Services-Interoperability Organization. All rights reserved. Page 13 of 44

3.2.3 How to Deploy the Monitor
The monitor uses the man-in-the-middle approach to monitor and record SOAP messages
between clients and services. In order to integrate the monitor with a deployed Web Service, one
of the three following techniques should be used:

1. Alter the Requestor
2. Move the Service
3. Alter the UDDI Registry entry

• Alter the Requestor: This technique involves altering the requestor, or client, to direct

its requests to an alternative URL and/or port. This approach is usually the easiest where
a testing program or test harness is being used to drive the server. In this case no
modifications are required to the server, and the monitor can be used to test both internal
and external Web services.

• Move the Service: In this case the service is moved to new location and/or port, and the

monitor takes its place. This approach is best used where the client code cannot be
modified, and the service can be conveniently modified or relocated.

• Alter the UDDI Registry entry: For applications where the connection (end point) is

dynamically established through a UDDI registry, the monitor can be integrated by
updating the UDDI entry. In this case the updated UDDI entry can refer to a WSDL
definition where the address location in the service name has been updated to refer to the
monitor, or, if the endpoint is specified in the accessPoint of the bindingTemplate, simply
modify this accessPoint.

© Copyright 2002 by the Web Services-Interoperability Organization. All rights reserved. Page 14 of 44

3.3 The Monitor Output

3.3.1 The Message Log File
The monitor logs all information to an XML file. The file starts with some header information
explaining what monitor produced the log, and what the configuration options were. An example
is given in Figure 3 below:

<?xml version="1.0" encoding="utf-8" ?>

<?xml-stylesheet type="text/xsl" href="..\lib\messageLog.xsl"?>

<wsi-log:log xmlns:wsi-log="http://www.ws-i.org/testing/2003/03/log/"

 xmlns:wsi-common="http://www.ws-i.org/testing/2003/03/common/"

 xmlns:wsi-monConfig=

 "http://www.ws-i.org/testing/2003/03/monitorConfig/"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 timestamp="2002-10-01T13:07:30.9200652-07:00">

 <wsi-log:monitor version="1.0" releaseDate="2002-12-20">

 <wsi-log:implementer name="WS-I Organization" location="http://www.ws-

i.org/CSharp/2003/03/Monitor.zip" />

 <wsi-log:environment>

 <wsi-log:runtime name=".NET" version="1.0.3705.288" />

 <wsi-log:operatingSystem name="Win32NT"

 version="5.1.2600.0" />

 <wsi-log:xmlParser name=".NET" version="1.0.3705.288" />

 </wsi-log:environment>

 <wsi-monConfig:configuration>

 <wsi-monConfig:logFile replace="true"

 location="c:\traceLog.xml">

 <wsi-common:addStyleSheet

 href="../common/xsl/messageLog.xsl"/>

 </wsi-monConfig:logFile>

 <wsi-monConfig:logDuration>900</wsi-monConfig:logDuration>

 <wsi-monConfig:cleanupTimeoutSeconds

 >120</wsi-monConfig:cleanupTimeoutSeconds>

 <wsi-monConfig:manInTheMiddle>

 <wsi-monConfig:redirect>

 <wsi-monConfig:listenPort

 >9090</wsi-monConfig:listenPort>

 <wsi-monConfig:schemeAndHostPort

 >http://localhost</wsi-monConfig:schemeAndHostPort>

 <wsi-monConfig:maxConnections

 >1000</wsi-monConfig:maxConnections>

 <wsi-monConfig:readTimeoutSeconds

© Copyright 2002 by the Web Services-Interoperability Organization. All rights reserved. Page 15 of 44

 >30</wsi-monConfig:readTimeoutSeconds>

 </wsi-monConfig:redirect>

 <wsi-monConfig:redirect>

 <wsi-monConfig:listenPort

 >8080</wsi-monConfig:listenPort>

 <wsi-monConfig:schemeAndHostPort

 >http://localhost</wsi-monConfig:schemeAndHostPort>

 <wsi-monConfig:maxConnections

 >1000</wsi-monConfig:maxConnections>

 <wsi-monConfig:readTimeoutSeconds

 >30</wsi-monConfig:readTimeoutSeconds>

 </wsi-monConfig:redirect>

 </wsi-monConfig:manInTheMiddle>

 </wsi-monConfig:configuration>

 </wsi-log:monitor>

 <wsi-log:messageEntry xsi:type="wsi-log:httpMessageEntry"

 timestamp="2002-10-01T13:07:31.9200652-07:00"

 conversationID="e1432705-4984-4d9f-a00f-54abd8ec72e9"

 ID="1"

 type="request" >

 <wsi-log:messageContent><?xml version="1.0" encoding="utf-8"?><

soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"><soap:Body><FlightSearch

xmlns="http://tempuri.org/"><Departure>Point A</Departure><

Destination>Point B</Destination><DepartureDate>

2001-10-12T00:00:00.0000000-07:00</DepartureDate><ReturnDate>

2001-12-12T00:00:00.0000000-08:00</ReturnDate></FlightSearch><

/soap:Body></soap:Envelope></wsi-log:messageContent>

 <wsi-log:senderHostAndPort

 >127.0.0.1:4870</wsi-log:senderHostAndPort>

 <wsi-log:receiverHostAndPort

 >localhost:80</wsi-log:receiverHostAndPort>

 <wsi-log:httpHeaders>POST /AsyncWebService/Service1.asmx HTTP/1.1

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; MS Web Services Client

Protocol 1.0.3705.288)

Content-Type: text/xml; charset=utf-8

SOAPAction: "http://tempuri.org/FlightSearch"

Content-Length: 489

Expect: 100-continue

Connection: Keep-Alive

Host: localhost

© Copyright 2002 by the Web Services-Interoperability Organization. All rights reserved. Page 16 of 44

</wsi-log:httpHeaders>

 </wsi-log:messageEntry>

 <wsi-log:messageEntry xsi:type="wsi-log:httpMessageEntry"

 timestamp="2002-10-01T13:07:37.4269711-07:00"

 conversationID="e1432705-4984-4d9f-a00f-54abd8ec72e9"

 ID="2"

 type="response" >

 <wsi-log:messageContent><?xml version="1.0" encoding="utf-8"?><

soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"><soap:Body><

FlightSearchResponse

xmlns="http://tempuri.org/"><FlightSearchResult>VF77</

FlightSearchResult>

<Flight>VF30</Flight><Time>9:00

AM</Time></FlightSearchResponse></soap:Body><

/soap:Envelope></wsi-log:messageContent>

 <wsi-log:senderHostAndPort

 >localhost:80</wsi-log:senderHostAndPort>

 <wsi-log:receiverHostAndPort

 >127.0.0.1:4870</wsi-log:receiverHostAndPort>

 <wsi-log:httpHeaders>HTTP/1.1 200 OK

Server: Microsoft-IIS/5.1

Date: Tue, 01 Oct 2002 20:07:37 GMT

Cache-Control: private, max-age=0

Content-Type: text/xml; charset=utf-8

Content-Length: 405

</wsi-log:httpHeaders>

 </wsi-log:messageEntry>

</wsi-log:log>

Figure 3 – Example of Message Log file.

The schema for the log file can be found in the specification or relative to your working directory
at wsi-test-tools\common\schemas.

What follows here is a description of the elements:

Element Description Attributes

log Root element for the message log. • timestamp
Identifies the time that the log was
created. This value is less than or
equal to the timestamp of the first
messageEntry in the log.

© Copyright 2002 by the Web Services-Interoperability Organization. All rights reserved. Page 17 of 44

Element Description Attributes

monitor Contains information that should allow someone
reading a log to identify exactly which tool
produced the log. This element also contains the
XML in the configuration file used by the
monitor.

• version
The version number for the
implementation of the tool.

• releaseDate
The date the tool was released.

implementer Identifies the organization that created the
monitor tool.

• name
Name of the organization that
created the monitor tool.

• location
URL pointing to the Web site
where the monitor tool can be
obtained.

environment Describes the environment used to run the
application and the language used to construct
the application.

[None]

runtime Identifies the primary programming language
used to create the monitor.

• name
Name of the runtime environment.
Ex: Java, .NET, etc.

• version
Identifies the version of the
runtime in use. This could be a
dotted version string
(1.0.3705.288.

operatingSystem Identifies the name and version of the operating
system that the monitor is running on.

• name
Name of the operating system.

• version
Identifies which version of the
operating system is in use.

xmlParser For some monitors, it is known that the XML
Parser version will be important. This element is
optional and will only be included if the XML
Parser makes a difference.

• name
Recognized name of the XML
parser.

• version
Identifies which version of the
XML Parser was used.

configuration This is a straight import of the configuration file
used when the logFile was created. This is
included to help understand how the log itself
produced its results.

[None]

messageEntry Used to identify a message. This represents a
message moving in one direction.

• timestamp
Time that the message was
received by the monitor tool.

• conversationID
This identifier is used to group
messages received between the
time that the client connects to the
monitor port and when that
connection is closed. The string is
unique for each connection.

• ID
This attribute is used to uniquely

© Copyright 2002 by the Web Services-Interoperability Organization. All rights reserved. Page 18 of 44

Element Description Attributes

identify the message within the
log.

• type
Identifies the entry as an HTTP
request or an HTTP response.
Valid values are request and
response.

messageContent Contains the HTTP Body message in the HTTP
POST or HTTP response.
Special characters like ‘<’ and ‘>’ will be
converted to their entity reference equivalents.
In this case < and > respectively.

[None]

senderHostAndPort This identifies the host and TCP port that is
sending data. In a Request message, this will
match the value of the host element in the
monitor configuration file. Instead of including
the scheme identifier, the value will simply be
<host>:<port>. The port is listed in this element.
When a port is not specified in an HTTP-based
URL, the port value defaults to 80.

[None]

receiverHostAndPort This identifies the host and TCP port that is
receiving data. In a Response message, this will
match the value of the host element in the
monitor configuration file. Instead of including
the scheme identifier, the value will simply be
<host>:<port>. The port is listed in this
element.. When a port is not specified in an
HTTP-based URL, the port value defaults to 80.

[None]

httpHeaders The raw text of any HTTP headers sent by one
direction of an HTTP request or response.

[None]

It is important to note that the monitor only logs the HTTP conversation, and makes no
assumptions about the content of an HTTP body. The monitor does not check whether a message
element contains a SOAP message. If a message contains an HTTP Content-Length header, it
will not record the message until the number of bytes specified in that header is received. This
feature is included primarily to deal with HTTP messages that issue an HTTP 100-continue
request separate from sending the message body. (It is legal to send the HTTP headers
independently of the message body with a HTTP Expect Header of 100-continue.)

© Copyright 2002 by the Web Services-Interoperability Organization. All rights reserved. Page 19 of 44

4 Using the Analyzer Tool

4.1 Configuration
The analyzer configuration contains the list of options for this tool. This file may also contain
implementation-specific configuration parameters. Three examples of configuration XML files
are shown below:

The first example in Figure 4 directly references the WSDL document, e.g. a local file:

<?xml version="1.0" encoding="UTF-8"?>
<wsi-analyzerConfig:configuration name="Sample Basic Profile Analyzer Configuration"
 xmlns:wsi-analyzerConfig="http://www.ws-i.org/testing/2003/03/analyzerConfig/"
 xmlns:wsi-common="http://www.ws-i.org/testing//2003/03/common/">
 <wsi-common:description xml:lang="en">
 This file contains a sample of the configuration file for
 the Basic Profile Analyzer, which can be used with the
 other sample files.
 </wsi-common:description>

 <wsi-analyzerConfig:verbose>false</wsi-analyzerConfig:verbose>

<wsi-analyzerConfig:assertionResults type="all" messageEntry="false"
 failureMessage="true"/>

 <wsi-analyzerConfig:reportFile replace="true" location="report.xml">
 <wsi-common:addStyleSheet href="../common/xsl/report.xsl"/>
 </wsi-analyzerConfig:reportFile>
 <wsi-analyzerConfig:testAssertionsFile>
 ../common/profiles/BasicProfileTestAssertions.xml
 </wsi-analyzerConfig:testAssertionsFile>
 <wsi-analyzerConfig:logFile correlationType="endpoint">
 traceLog.xml
 </wsi-analyzerConfig:logFile>
 <wsi-analyzerConfig:wsdlReference>
 <wsi-analyzerConfig:wsdlElement type="port"
 parentElementName="RetailerService"
 namespace="http://.../RetailerService.wsdl">
 LocalIBMRetailerPort
 </wsi-analyzerConfig:wsdlElement>
 <wsi-analyzerConfig:wsdlURI>
 ../common/samples/RetailerService.wsdl
 </wsi-analyzerConfig:wsdlURI>
 </wsi-analyzerConfig:wsdlReference>
</wsi-analyzerConfig:configuration>

Figure 4 – Example of Configuration file Using Direct WSDL Reference.

The schema for the configuration file can be found in the specification or relative to your
working directory at wsi-test-tools\common\schemas. The sample configuration file in the
previous example instructs the analyzer to do the following things:

© Copyright 2002 by the Web Services-Interoperability Organization. All rights reserved. Page 20 of 44

1. Run without displaying diagnostic information (wsi-analyzerConfig:verbose value is
false)

2. List all assertion results in the conformance report, as opposed to listing only a subset of
these, like the ones which failed (assertionResults type="all")

3. Exclude log entries from the conformance report (messageEntry="false). The
conformance of each log entry will still be reported, but the full content of the log entry
will not appear, as it may be a large document.

4. Include failure messages for each test assertion in the report (failureMessage="true")
5. Write the report file to “report.xml” (location="report.xml”), and if there was already a

report with same name, will replace it (replace="true").Write the log file to
“tracelog.xml” (wsi-analyzerConfig:logFile value is traceLog.xml).

6. Correlate messages to Web services based on the endpoint
(correlationType="endpoint”).

7. The conformance target is a single port: (wsdlElement type="port" ,
parentElementName="RetailerService")

8. Take the WSDL definitions from “samples/retailer.wsdl” (wsdlElement
namespace="http://.../Retailer.wsdl”).

The second example in Figure 5 refers to the WSDL document, via the Service location:

<?xml version="1.0" encoding="UTF-8"?>
<wsi-analyzerConfig:configuration name="Sample Basic Profile Analyzer Configuration"
 xmlns:wsi-analyzerConfig="http://www.ws-i.org/testing/2003/03/analyzerConfig/"
 xmlns:wsi-common="http://www.ws-i.org/testing//2003/03/common/">
 <wsi-common:description xml:lang="en">
 This file contains a sample of the configuration file for
 the Basic Profile Analyzer, which can be used with the
 other sample files.
 </wsi-common:description>

 <wsi-analyzerConfig:verbose>false</wsi-analyzerConfig:verbose>
 <wsi-analyzerConfig:assertionResults type="all" messageEntry="false" failureMessage="true"/>
 <wsi-analyzerConfig:reportFile replace="true" location="report.xml">
 <wsi-common:addStyleSheet href="../common/xsl/report.xsl"/>
 </wsi-analyzerConfig:reportFile>
 <wsi-analyzerConfig:testAssertionsFile>
 ../common/profiles/BasicProfileTestAssertions.xml
 </wsi-analyzerConfig:testAssertionsFile>
 <wsi-analyzerConfig:logFile correlationType="endpoint">
 traceLog.xml
 </wsi-analyzerConfig:logFile>
 <wsi-analyzerConfig:wsdlReference>
 <wsi-analyzerConfig:wsdlElement type="binding"
 namespace="http://www.ws-
i.org/SampleApplications/SupplyChainManagement/2002-08/Retailer.wsdl">
 RetailerSoapBinding
 </wsi-analyzerConfig:wsdlElement>
 <wsi-analyzerConfig:wsdlURI>
 http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-08/Retailer.wsdl
 </wsi-analyzerConfig:wsdlURI>
 <wsi-analyzerConfig:serviceLocation>
 http://tempuri.org/services/retailerService

© Copyright 2002 by the Web Services-Interoperability Organization. All rights reserved. Page 21 of 44

 </wsi-analyzerConfig:serviceLocation>
 </wsi-analyzerConfig:wsdlReference>
</wsi-analyzerConfig:configuration>

Figure 5 – Example of Configuration file Using Service Location

An example of configuration file that points to a UDDI entry as the source of description
material is shown in Figure 6 below.

<?xml version="1.0" encoding="UTF-8"?>
<wsi-analyzerConfig:configuration name="Sample Basic Profile Analyzer Configuration"
 xmlns:wsi-analyzerConfig="http://www.ws-i.org/testing/2003/03/analyzerConfig/"
 xmlns:wsi-common="http://www.ws-i.org/testing//2003/03/common/">
 <wsi-common:description xml:lang="en">
 This file contains a sample of the configuration file for
 the Basic Profile Analyzer, which can be used with the
 other sample files.
 </wsi-common:description>

 <wsi-analyzerConfig:verbose>false</wsi-analyzerConfig:verbose>
 <wsi-analyzerConfig:assertionResults type="all" messageEntry="false" failureMessage="true"/>
 <wsi-analyzerConfig:reportFile replace="true" location="report.xml">
 <wsi-common:addStyleSheet href="../common/xsl/report.xsl"/>
 </wsi-analyzerConfig:reportFile>
 <wsi-analyzerConfig:testAssertionsFile>
 ../common/profiles/BasicProfileTestAssertions.xml
 </wsi-analyzerConfig:testAssertionsFile>
 <wsi-analyzerConfig:logFile correlationType="endpoint">
 traceLog.xml
 </wsi-analyzerConfig:logFile>
 <wsi-analyzerConfig:uddiReference>
 <wsi-analyzerConfig:wsdlElement type="binding"
 namespace="http://.../Retailer.wsdl">
 RetailerSoapBinding
 </wsi-analyzerConfig:wsdlElement>
 <wsi-analyzerConfig:uddiKey type="tModelKey">…</wsi-analyzerConfig:uddiKey>
 <wsi-analyzerConfig:inquiryURL>
 http://tempuri.org/uddi/inquiryapi
 </wsi-analyzerConfig:inquiryURL>
 </wsi-analyzerConfig:uddiReference>
</wsi-analyzerConfig:configuration>

Figure 5 – Example of Analyzer Configuration File Using UDDI Reference.

The definitions of the elements in the analyzer configuration file are:

Element Description Attributes
configuration The root element for the configuration file. • name

The name associated with
the option settings in the
configuration file.

© Copyright 2002 by the Web Services-Interoperability Organization. All rights reserved. Page 22 of 44

wsi-common: description A text description of the parent element. [None]

verbose Used to indicate whether diagnostic information
should be displayed while the analyzer is
running. The valid values for this element are
“true” or “false”. If this element is not
specified, then the value is “false”.

[None]

assertionResults This element is used to indicate the type of
assertion results that should be listed in the
conformance report.

Note: The values for the type attribute have the
following meaning:
• all

List the results from all test assertions.
• notPassed

List all of the assertion test results except
the ones that have a result of passed.

• onlyFailed
List only the test assertion results which
have a result of failed.

• type
The type of assertion
results to include in the
conformance report. The
default value is “all”.

• messageEntry
If “true”, then include
message entries in the
report file. If “false”, the log
entries are not included in
the report file. This
attribute is “true” by default.

• assertionDescription
If “true”, then include the
assertion description for
each test assertion in the
report. If “false”, then the
assertion descriptions are
not included the report.
This attribute is “false” by
default.

• failureMessage
If “true”, then include the
failure messages that are
pre-defined for each test
assertion in the report.
This attribute is “false” by
default.

• failureDetail
If “true”, then include the
failure detail messages in
the report. This attribute is
“true” by default.

reportFile The name of the output conformance report file. • replace
This attribute indicates
whether the report file
should be replaced if it
already exists. The valid
values for this attribute are
“true” or “false”. If the
report file already exists
and this attribute is set to
“false”, then the analyzer
will terminate with an error
message. The default
value for this attribute is
“false”.

• location
The location where the
report file should be

© Copyright 2002 by the Web Services-Interoperability Organization. All rights reserved. Page 23 of 44

created.

wsi-common:
addStyleSheet

Indicates if a style sheet reference should be
added to the output conformance report.

Note: If this element is not specified, then the
following comment line will be inserted in the
report file after the XML declaration statement:

<!-- ?xml-stylesheet type="text/xsl"
href="..\common\xsl\report.xsl"? -->

• href
The location of the style
sheet.

• type
The content type for the
style sheet. The default for
this attribute is “text/xsl”.

• title
Advisory information about
the style sheet.

• media
Intended destination
medium.

• charset
Character encoding for the
style sheet.

• alternate
Indicates use of alternate
style sheet.

testAssertionFile This element contains the location of the WS-I
test assertion document, which is based on a
profile definition.

[None]

logFile The location of the messages that will be
processed by the analyzer tool.

Note: The valid values for the correlationType
attribute are:
• endpoint

A message is correlated to a Web service
based only on the endpoint definition. This
option is sufficient when a single Web
Service is deployed on this endpoint.

• namespace
The correlation process will use both the
endpoint and namespace to match a
message to a Web service. This option is
necessary when more than one Web
Services are deployed on this endpoint.
(The namespace allows for selecting the
right one.)

• operation
Correlation requires a match on the
endpoint, namespace, a operation signature.
This option is necessary when more than
one Web Services are deployed on this
endpoint, and they might use the same
namespace (The operation allows for
additional discrimination, although this will
not be sufficient if both WS use same
operation names.)

Note: If this element does not appear in the

• correlationType
Defines the kind of
information used to match
a message from the log file
with the Web service that is
being tested. The default
value is “operation”.

© Copyright 2002 by the Web Services-Interoperability Organization. All rights reserved. Page 24 of 44

configuration file, then all of the test assertions
that operate on the log entries will not be
processed.

wsdlReference This element contains a reference to the WSDL
element and description document which should
be analyzed.

Note: If this element does not appear in the
configuration file, then the WSDL related test
assertions will not be processed.

[None]

wsdlElement This element contains the reference to the
WSDL element that should be analyzed. This
element contains a reference to the type of
element referenced by the type attribute

Note: The following values can be specified on
the type attribute. Each value corresponds to a
WSDL element.
• port
• binding
• portType
• operation
• message

• type
The type of WSDL element
that is referenced by the
name attribute.

• parentElementName
The attribute is only
required when the type
attribute has a value of
“port” or “operation”. The
parent element name is
used to qualify the
reference to a WSDL port
definition within a service
element, and the reference
to a operation definition
within a portType.

wsdlURI This element contains the location of the WSDL
document for the Web service.

[None]

serviceLocation There are times when the service location is not
defined in a WSDL document, but this
information is required by the analyzer. When
this situation occurs, the <wsdlElement>
element should reference a WSDL binding and
this element should contain the service endpoint.

Note: If the <wsdlElement> element contains a
reference to a wsdl:port and the
<serviceLocation> element is specified, then the
value in the <serviceLocation> element
overrides the value in the location attribute on
the <soapbind:address> element.

[None]

© Copyright 2002 by the Web Services-Interoperability Organization. All rights reserved. Page 25 of 44

uddiReference This element can be used to reference a single
UDDI bindingTemplate or tModel. This
element is never specified with the
<wsdlReference> element.

Note: If this element does not appear in the
configuration file, then both the UDDI and
WSDL related test assertions will not be
processed.

[None]

uddiKey Contains either a bindingKey or tModelKey. • type
The type of UDDI key. The
valid values are
uddi:bindingKey or
uddi:tModelKey.

inquiryURL This element contains the inquiry URL that can
be used to retrieve the UDDI bindingTemplate
or tModel associated with the uddiKey element.

[None]

© Copyright 2002 by the Web Services-Interoperability Organization. All rights reserved. Page 26 of 44

4.2 Running the Analyzer

4.2.1 Executing the C# Version of the Analyzer
To run the analyzer tool (from the bin directory):

analyzer [-config < configFilename >]

Example:
cd <working-directory>\wsi-test-tools\cs\bin
analyzer -config ..\samples\analyzerConfig.xml

Note: If no configuration file is defined, the analyzer will default to analyzerConfig.xml.

4.2.2 Executing the Java Version of the Analyzer
To run the analyzer tool:

 bin\Analyzer -config <configFilename>

 Example:

cd <working-directory>\wsi-test-tools\java
bin\Analyzer -config samples\analyzerConfig.xml

Note: there is no default configuration file for the Java version.

4.2.3 Analyzer Tool Command Line Syntax
The command line options have the same meaning as the options defined in the configuration
file. All command line options override the options that are specified in the configuration file.
Note: the –config and –verbose options are supported by both tool packages (C# and Java). The
Java analyzer supports additional options.

 analyzer –config <file-location>
 -verbose <verbose-values>

The following table contains a definition of the command line options for the analyzer tool.

 Option Definition Required

1 -config
This option contains a reference to the analyzer
configuration file.

Yes (by Java
tool)

2 -verbose Display diagnostic messages on the console. No

© Copyright 2002 by the Web Services-Interoperability Organization. All rights reserved. Page 27 of 44

4.3 Analyzer Input Material

4.3.1 Types of Input
The test target material that will be analyzed is of three different types:

• Description (WSDL data)
• Messages (HTTP message items from the XML message log file)
• Discovery (UDDI entries)

4.3.2 Definitions
These definitions relate to terms that appear in the conformance report, and also help to describe
how the analyzer is processing test data.

• Artifact: General term used to designate the material used as input to the analyzer.
For the Basic Profile, there are three types of artifacts, which correspond to the
different inputs provided to the Analyzer:

o messages: designate the entries in the message log file.

o description: designate WSDL files or parts of these.

o discovery: any material represented in UDDI, not including WSDL items

• Entry type: Each artifact type can be further specialized into sub-types, called entry
types.

o “requestMessage” , “responseMessage” and “anyMessage” are two entry
types are associated with the “messages” artifact

o “port”, “binding”, “portType” are entry types that are associated with the
“description” artifact

o “bindingTemplate”, “tModel” are entry types for the “discovery” artifact

• Entry: An entry is an instance of an entry type, for example an HTTP request (for
“requestMessage” type), or a part of a WSDL file that describes a port binding (for
“binding” type).

4.3.3 Cases where incomplete input is provided

The test assertion document for the Basic Profile defines three primary artifacts: messages,
description, and discovery. These three artifacts correlate to the <logFile>, <wsdlReference>
and <uddiReference> elements, respectively. The following rules describe the expected
combinations, and the behavior of the analyzer for these combinations:

• If only the <logFile> element is specified, then all of the messages in a log file are
processed by the analyzer. Any test assertions that had a Web service description
defined for a secondary entry type will be bypassed.

© Copyright 2002 by the Web Services-Interoperability Organization. All rights reserved. Page 28 of 44

• The <wsdlReference> and <uddiReference> elements can not be specified together.

• If only the <uddiReference> element is specified, then the test assertions for both the
description and discovery artifacts are processed.

• If only the <wsdlReference> element is specified, then the test assertions for just the
description artifact are processed.

• If the <logFile> and <wsdlReference> elements are specified, then the test assertions
for both the messages and description artifacts are processed. If the <wsdlElement>
element contains a reference to a WSDL port or the <serviceLocation> element is
specified, and there are messages for more than one Web service in the log file, then
only the messages that are associated with specified Web service will be analyzed.

• If the <logFile> and <uddiReference> elements are specified, then the test assertions
for the messages, description and discovery artifacts are processed. If the <uddiKey>
element contains a reference to a bindingTemplate and there are messages for more
than one Web service in the log file, then only the messages that are associated with
specified Web service will be analyzed.

• If the <logFile> element is specified with either a <wsdlReference> or a
<uddiReference> and they do not contain a service location (i.e. wsdl:port element
reference, uddi:bindingTemplate reference, or <serviceLocation> element), then the
analyzer will terminate after processing the configuration options.

• If a <uddiReference> element contains a <wsdlElement> element, then the type
attribute value is “binding”. If it is not, then the analyzer will terminate after
processing the configuration options.

• If a <serviceLocation> element is specified within a <wsdlReference> element, the
<wsdlElement> element contains a reference to either a <wsdl:port> or
<wsdl:binding>. If it does not, then the analyzer will terminate after processing the
configuration options. If the <wsdlElement> element contains a reference to a
<wsdl:port>, then the value in the <serviceLocation> element is used instead of the
value of the <soapbind:address> element within the <wsdl:port> element.

• If a <serviceLocation> element is specified within a <uddiReference> element, the
<wsdlElement> element contains a reference to a <wsdl:binding>. If it does not, then
the analyzer will terminate after processing the configuration options. If the
<uddiKey> element contains a reference to a <uddi:bindingTemplate>, then the value
in the <serviceLocation> element is used instead of the value of the
<uddi:accessPoint> element within the <uddi:bindingTemplate>.

• A <uddiReference> element may contain a reference to a <uddi:bindingTemplate>
which references more than one <uddi:tModel> that are categorized as “wsdlSpec”,
or a <uddi:tModel> that references more than one <wsdl:binding>. When these
conditions exist, the <wsdlElement> element with a type attribute value of “binding”
will normally be used to indicate which <wsdl:binding> element to analyze.

• When a <uddiReference> element contains a valid <wsdlElement> element and the
referenced <uddi:bindingTemplate> or <uddi:tModel> contains a reference to more

© Copyright 2002 by the Web Services-Interoperability Organization. All rights reserved. Page 29 of 44

than one <wsdl:binding>, if the specified <wsdl:binding> can not be found then the
analyzer will terminate after detecting this condition.

There are certain situations where the input artifacts for the analyzer are not as complete as
expected, such as an empty log file or incomplete WSDL description. The following table
describes some of these cases, and explains what is the behavior of the analyzer in such cases.

 Input Artifact State Analyzer behavior
1 Log file with no elements (no

<messageEntry> element). This
could happen when the monitor
is started and stopped without
receiving any messages.

The test assertions that target a request or
response message as the primary entry, will
have a result of “notTestable”.

2 A WSDL document is provided
as input but it does not contain
the WSDL element which is
specified on the <wsdlElement>
element.

The analyzer will terminate with an error
message which indicates that the WSDL
document did not contain the expected WSDL
element.

3 The analyzer configuration file
contains a reference to a UDDI
entry, but the UDDI entry does
not exist.

The analyzer will terminate with an error
message which indicates that the UDDI entry
is not valid.

4 The analyzer configuration file
contains a reference to a port,
binding or portType, but the
associated portType does not
contain any operation
definitions.

If a log file is not specified in the analyzer
configuration file, then no special processing
occurs. The test assertions with WSDL
operation and WSDL message for primary
entry types will not be processed.

If a log file is specified and the correlation type
is endpoint, then the correlation process can be
done but any message-related test assertions
with an additional entry type of operation or
message will have a result of “notApplicable”.

If a log file is specified and the correlation type
is namespace or operation, then there is no way
to process the correlation function. When this
condition is detected, then the analyzer will
terminate with an error message that indicates
that the WSDL service description did not
contain enough information to process the
correlation function.

© Copyright 2002 by the Web Services-Interoperability Organization. All rights reserved. Page 30 of 44

4.4 The Test Assertions Document

4.4.1 Test Assertion representation
A test assertion is an encoding of a profile requirement defined in the profile document. It can
represent part of a requirement, a single requirement, or more than one requirement. The set of
test assertions derived from a profile requirement is scripted into an XML document called the
Test Assertion Document (TAD), stored in the BasicProfileTestAssertion.xml file. This
document will be used by the Analyzer as input, and will determine the set of test procedures that
will be activated.

An example of Test Assertion XML element is shown in Figure 7 below:

<testAssertion id="WSI3003" entryType="tModel" type="required" enabled="true">
 <context>For a candidate uddi:tModel</context>
 <assertionDescription>The uddi:tModel is categorized using the uddi:types taxonomy, as
"wsdlSpec": the uddi:keyedReference element has an attribute keyValue equal to "wsdlSpec", and
keyName equal to "uddi-org:types" or "types"</assertionDescription>
 <failureMessage>The uddi:tModel is not categorized using the uddi:types taxonomy with a
categorization of "wsdlSpec".</failureMessage>
 <failureDetailDescription>{tModel key}{categoryBag}</failureDetailDescription>
 <additionalEntryTypeList>
 <messageInput>none</messageInput>
 <wsdlInput>none</wsdlInput>
 <uddiInput>none</uddiInput>
 </additionalEntryTypeList>
 <prereqList/>
 <referenceList>
 <reference profileID="BP1">R3003</reference>
 </referenceList>
 <comments/>
 </testAssertion>

Figure 7 – Example of Test Assertion.

4.4.2 Term Definitions
The following terms are used when describing a test assertion. Each of these terms is always
related to a particular test assertion:

• Test Assertion: A test assertion is a translation of a WS-I profile requirement into a
statement verifiable by the analyzer. Each test assertion is defined by a testAssertion
XML element in the Test Assertion Description document. Each test assertion usually
relates to a specific artifact (though it may correlate several artifacts, a test assertion
will always relate to one of these as its primary artifact, e.g. a “WSDL” test assertion,
or a “message” test assertion.) This artifact type is identified by the “type” attribute of
the “artifact” XML element of which the test assertion is a child.

© Copyright 2002 by the Web Services-Interoperability Organization. All rights reserved. Page 31 of 44

• Primary Entry (Type): A Test Assertion will always target instances of a specific
entry type, for example, a request message or a WSDL port binding. It is identified by
the attribute “entryType” of the XML element “testAssertion”. (Note that a TA may
need to correlate other entries, e.g. may need to access WSDL definitions in order to
verify messages captured on the wire). The primary entry type for a test assertion is
the entry type that is the main object of the test assertion, e.g. a message request or
response. Each test assertion will generate a single conformance statement within an
analyzer report. The conformance statement will only concern the primary entry
even though the reported errors may provide details on the associated non-primary
entries. This means there will be as many pass-or-fail results for this test assertion, as
there are qualified entries (instances of the primary entry type) in the input material to
the Analyzer.

• Secondary Entry (Type): A secondary entry is any entry that is required in addition
to the primary entry, in order to process a test assertion, i.e. needs to be correlated
with the primary entry. For example, the primary entry may be a request message as
captured on the wire, and a secondary entry may be the message parts description in
WSDL that relates to this wire message. The list of secondary entry types (if any) is
specified in the XML element “additionalEntryTypeList”.

• Context: Intuitively, the context of a test assertion defines which test material will
qualify for a test assertion. A context in a test assertion is a pre-condition that entries
of one or more entry types must satisfy in order for the analyzer to verify the test
assertion over these entries. When more than one entry type is defined in a test
assertion (primary and secondary types), the context normally defines how to
correlate the entries instances of these types, so that the right secondary entries will
be associated with the primary entry. The context should also single out the primary
entry type. It is described by the XML element: “Context” in the TAD.

• Assertion Description: The assertion description for a test assertion is the actual
profile requirement to which a qualified entry is expected to conform. It is described
by the XML element: “assertionDescription” in the TAD.

• Pre-requisites: A test assertion may refer to pre-requisite test assertions. The
intuitive meaning of pre-requisites is that when verifying the test assertion over an
entry, in case this entry (or related secondary entries) did not satisfy the pre-requisite
test assertions for this test assertion, then the outcome of the test assertion verification
would be meaningless. Consequently, a test assertion should never be evaluated for
an entry, if the entry (or related secondary entries) the relevant pre-requisite test
assertions didn’t pass. Pre-requisite test assertion Ids are listed in the XML element:
“prereqList” in the TAD.

4.4.3 How the Test Assertions are processed
This section provides additional information on how test assertions are processed.

• Each one of the Analyzer input options (e.g. as defined in the analyzer configuration
file) maps to an artifact type: description, messages, or discovery. The Analyzer will
process all the target material (entries) of a type of artifact, before processing entries

© Copyright 2002 by the Web Services-Interoperability Organization. All rights reserved. Page 32 of 44

of the next type of artifact. The processing order is: (1) discovery, (2) description, (3)
messages.

• The entries in the input material, are processed in an ordered way, e.g. message
entries are processed in the order they appear in the message log file. Each entry of an
artifact type will be analyzed in sequence, which means the analysis of an entry will
be complete (a report on the profile-conformance of the entry will be appended in the
report document) before analyzing the next entry.

• When an entry is analyzed, all the test assertions which have a corresponding primary
entry type, will be considered for verification. Only those for which (1) the primary
entry has also passed the pre-requisite assertions, (2) the primary entry satisfies the
Context, will be processed. For each processed TA, there will be a report item in the
conformance report, for this entry.

When a test assertion is processed over an entry, it will complete with one of the following
results:

• passed
The test assertion completed the verification on the entry without detecting any
errors.

• failed
The entry in input failed the test assertion.

• warning
The entry in input failed the test assertion, but the test assertion indicated that it was
“recommended”, not “required”. This type of failure will not affect the overall
conformance result.

• notApplicable
The entry did not qualify for this test assertion, which means that although the entry
was of the type of artifact relevant to this test assertion, it did not match the
qualification criteria or it failed a prerequisite test assertion. In both cases, the test
assertion is not relevant to this entry.

When summarizing the overall result of a test assertion over a set of entries, all individual
entry results will be counted for each of the above outcomes, in the conformance report.
Another case may occur, where no entry of the expected type was provided for this test
assertion (e.g. no WSDL file was provided to the analyzer for a test assertion relatin to
WSDL.)

• notTestable
The test assertion was not processed due to a lack of entries of the expected type.

© Copyright 2002 by the Web Services-Interoperability Organization. All rights reserved. Page 33 of 44

4.5 The Profile Conformance Report

The analyzer tool produces one output file, the Conformance Report. This file contains
the conformance report for the set of artifacts that were produced by a Web service. This
report contains the conformance test results for the material provided as input to the
Analyzer (WSDL, message log file), with regard to the set of assertions that were to be
verified (in BasicProfileTestAssertion.xml document). The conformance report also
details the conformance level for each test assertion that was processed, and may list
detailed information for any error that was encountered. The report also contains a
summary of the test assertions results. This summary will indicate if the artifacts related
to the target Web service passed or failed the profile conformance test.

The conformance report as produced by the Analyzer is an XML file. An XSL transform
is provided for HTML rendering, and also for computing different views of the raw data
in XML format, such as test assertion summaries, for each class of artifact.
The next section describes first the XML format of the report.
The following section comments on the HTML rendering of the report, which is the one
users may want to consult, as a more readable document for conformance assessment.

4.5.1 Example of Conformance Report In XML Format
The following figure (Figure 8) contains an example of a profile conformance report
XML file, as produced by the Analyzer.

Note: This example does not contain a complete conformance report. Most of the test
assertion results have been left out.

<report name="WS-I Basic Profile Conformance Draft Report. This is a prerelease version and no
statement can be made from this report on WS-I conformance."
 timestamp="2003-03-25T16:56:56.905Z"
 xmlns="http://www.ws-i.org/testing/2003/03/report/"
 xmlns:wsi-report="http://www.ws-i.org/testing/2003/03/report/"
 xmlns:wsi-log="http://www.ws-i.org/testing/2003/03/log/"
 xmlns:wsi-common="http://www.ws-i.org/testing/2003/03/common/"
 xmlns:wsi-analyzerConfig="http://www.ws-i.org/testing/2003/03/analyzerConfig/"
 xmlns:wsi-monConfig="http://www.ws-i.org/testing/2003/03/monitorConfig/"
 xmlns:wsi-assertions="http://www.ws-i.org/testing/2003/03/assertions/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <analyzer version="0.91" releaseDate="2003-03-25">
 <implementer name="Web Services Interoperability Organization" location="http://www.ws-
i.org/testing/2003/03/Analyzer.html"/>
 <environment>
 <runtime name="Java(TM) 2 Runtime Environment, Standard Edition" version="1.4.0_03-
b04"/>
 <operatingSystem name="Windows 2000" version="5.0"/>
 <xmlParser name="Apache Xerces" version="Xerces-J 2.2.1"/>
 </environment>
 <wsi-analyzerConfig:configuration>
 <wsi-analyzerConfig:verbose>false</wsi-analyzerConfig:verbose>

© Copyright 2002 by the Web Services-Interoperability Organization. All rights reserved. Page 34 of 44

 <wsi-analyzerConfig:assertionResults type="all" messageEntry="true" failureMessage="true"
failureDetail="true"/>
 <wsi-analyzerConfig:reportFile replace="true" location="report.xml">
 <wsi-common:addStyleSheet href="../common/xsl/report.xsl" type="text/xsl"/>
 </wsi-analyzerConfig:reportFile>
 <wsi-analyzerConfig:testAssertionsFile>
 ../common/profiles/BasicProfileTestAssertions.xml
 </wsi-analyzerConfig:testAssertionsFile>
 <wsi-analyzerConfig:logFile>log.xml</wsi-analyzerConfig:logFile>
 <wsi-analyzerConfig:wsdlReference>
 <wsi-analyzerConfig:wsdlElement type="port" namespace="http://www.ws-
i.org/SampleApplications/SupplyChainManagement/2002-08/RetailerService.wsdl"
parentElementName="RetailerService">LocalIBMRetailerPort</wsi-analyzerConfig:wsdlElement>
 <wsi-analyzerConfig:wsdlURI>samples/RetailerService.wsdl </wsi-
analyzerConfig:wsdlURI>
 </wsi-analyzerConfig:wsdlReference>
 </wsi-analyzerConfig:configuration>
 </analyzer>

 <artifact type="discovery">
 <entry >
 <assertionResult id="WSI3002" result="notTestable">
 </assertionResult>
 <assertionResult id="WSI3003" result="notTestable">
 </assertionResult>
 </entry>
 </artifact>
 <artifact type="description">
 <entry type="definitions" referenceID="file:samples/RetailerService.wsdl">
 <assertionResult id="WSI2702" result="passed">
 </assertionResult>
 </entry>
 <entry type="definitions" referenceID="http://www.ws-
i.org/SampleApplications/SupplyChainManagement/2002-08/Retailer.wsdl">
 <assertionResult id="WSI2702" result="passed">
 </assertionResult>
 </entry>
 <entry type="definitions" referenceID="http://www.ws-
i.org/SampleApplications/SupplyChainManagement/2002-08/Configuration.wsdl">
 <assertionResult id="WSI2702" result="passed">
 </assertionResult>
 </entry>
 <entry type="binding" referenceID="http://www.ws-
i.org/SampleApplications/SupplyChainManagement/2002-08/Retailer.wsdl:RetailerSoapBinding">
 <assertionResult id="WSI2019" result="notApplicable">
 </assertionResult>
 <assertionResult id="WSI2012" result="notApplicable">
 </assertionResult>
 <assertionResult id="WSI2020" result="passed">
 </assertionResult>
 <assertionResult id="WSI2021" result="passed">
 </assertionResult>
 <assertionResult id="WSI2022" result="passed">
 </assertionResult>
 <assertionResult id="WSI2023" result="passed">
 </assertionResult>

© Copyright 2002 by the Web Services-Interoperability Organization. All rights reserved. Page 35 of 44

 <assertionResult id="WSI2404" result="passed">
 </assertionResult>
 <assertionResult id="WSI2406" result="passed">
 </assertionResult>
 <assertionResult id="WSI2013" result="passed">
 </assertionResult>
 <assertionResult id="WSI2017" result="passed">
 </assertionResult>
 </entry>
 <entry type="portType" referenceID="http://www.ws-
i.org/SampleApplications/SupplyChainManagement/2002-08/Retailer.wsdl:RetailerPortType">
 <assertionResult id="WSI2010" result="passed">
 </assertionResult>
 </entry>
 <entry type="operation" referenceID="getCatalog" parentElementName="RetailerService">
 <assertionResult id="WSI2208" result="passed">
 </assertionResult>
 </entry>
 <entry type="operation" referenceID="submitOrder" parentElementName="RetailerService">
 <assertionResult id="WSI2208" result="passed">
 </assertionResult>
 </entry>
 </artifact>
 <artifact type="message">
 <artifactReference timestamp="2003-03-25T16:06:03.605Z">
 <wsi-monConfig:comment>This configuration file is used to test the WS-I sample
applications.</wsi-monConfig:comment>
 </artifactReference>
 <entry type="requestMessage" referenceID="19">
 <wsi-log:messageEntry xsi:type="wsi-log:httpMessageEntry" ID="19" conversationID="1"
type="request" timestamp="2003-03-25T14:20:51.234Z">
 <wsi-log:messageContent>[…message content…]</wsi-log:messageContent>
 <wsi-log:senderHostAndPort>127.0.0.1:3666</wsi-log:senderHostAndPort>
 <wsi-log:receiverHostAndPort>localhost:6080</wsi-log:receiverHostAndPort>
 <wsi-log:httpHeaders>POST /Retailer/services/Retailer HTTP/1.0
Content-Type: text/xml; charset=utf-8
Accept: application/soap+xml, application/dime, multipart/related, text/*
User-Agent: Axis/1.0
Host: localhost:6080
Cache-Control: no-cache
Pragma: no-cache
SOAPAction: ""
Content-Length: 3446

</wsi-log:httpHeaders>
 </wsi-log:messageEntry>

 <assertionResult id="WSI1004" result="passed">
 </assertionResult>
 <assertionResult id="WSI1601" result="passed">
 </assertionResult>
 <assertionResult id="WSI1201" result="passed">
 </assertionResult>
 <assertionResult id="WSI1701" result="passed">
 </assertionResult>
 <assertionResult id="WSI1202" result="passed">

© Copyright 2002 by the Web Services-Interoperability Organization. All rights reserved. Page 36 of 44

 </assertionResult>
 <assertionResult id="WSI1306" result="notApplicable">
 </assertionResult>
 <assertionResult id="WSI1316" result="notApplicable">
 </assertionResult>
 <assertionResult id="WSI1307" result="passed">
 </assertionResult>
 <assertionResult id="WSI1308" result="passed">
 </assertionResult>
 <assertionResult id="WSI1318" result="passed">
 </assertionResult>
 <assertionResult id="WSI1309" result="passed">
 </assertionResult>
 <assertionResult id="WSI1002" result="passed">
 </assertionResult>
 <assertionResult id="WSI1001" result="warning">
 <failureMessage xml:lang="en">Message is not sent using HTTP/1.1.</failureMessage>
 <failureDetail xml:lang="en">POST /Retailer/services/Retailer HTTP/1.0
Content-Type: text/xml; charset=utf-8
Accept: application/soap+xml, application/dime, multipart/related, text/*
User-Agent: Axis/1.0
Host: localhost:6080
Cache-Control: no-cache
Pragma: no-cache
SOAPAction: ""
Content-Length: 3446

</failureDetail>
 </assertionResult>
 <assertionResult id="WSI1203" result="notApplicable">
 </assertionResult>
 </entry>

 <!-- Other message entry results go here. -->

 </artifact>
 <summary result="passed">
 </summary>
</report>

Figure 8. Example of Profile Conformance Report.

The following table defines each of the elements that can be used in the conformance
report file.

Element Description Attributes
report The root element for the profile conformance

report file.
• name

The name of the conformance
report.

• timestamp

© Copyright 2002 by the Web Services-Interoperability Organization. All rights reserved. Page 37 of 44

The date and time that the report
was generated.

analyzer This element contains information about the
specific implementation of the analyzer tool,
and the options that were used to test a Web
service for conformance to a profile.

• version
The version number for the
implementation of the tool. This
value contains a version and
release number. It may also
contain a major and minor
number.

• releaseDate
The date the tool was built.

implementer The organization that implemented the
analyzer tool.

Note: The URI value for the location
attribute , if present in the report, contains an
indication of the analyzer version. (date or
version number). Here are two examples of
how this may appear in an analyzer
implementation:

http://hostname/2003/03/analyzer
http://hostname/1.0/analyzer

• name
The name of the organization that
implemented the tool.

• location
Web site where you can get more
information on the
implementation of the tool.

environment The environment that was used to run the
analyzer tool.

[None]

runtime The runtime that was used by the analyzer. • name
Runtime name.

• version
Runtime version.

operatingSystem The operating system where the analyzer
tools was run.

• name
Operating system name.

• version
Operating system version.

xmlParser The XML parser that was used when running
the analyzer.

• name
XML parser name.

• version
XML parser version.

wsi-analzyerConfig:
configuration

The configuration options which were
specified when the analyzer was run. Refer
to the section on the configuration file for a
description of this element and its contents.

[None]

artifact This element contains a reference to one of
the artifacts that is listed in the test assertion
document.

• type
The type of artifact that is being
analyzed. The value of the
attribute always matches one of
the valid artifact types defined in
the test assertion document.

artifactReference This element contains artifact reference
information. For example, if the artifact is
“message”, then it will contain the
timestamp from the message log file and it
may contain the contents of the first <wsi-
monConfig:comment> element that appears

• timestamp
The timestamp from the message
log file or the date and time for
the WSDL file.

© Copyright 2002 by the Web Services-Interoperability Organization. All rights reserved. Page 38 of 44

in the monitor configuration section of the
log file if it is present.

wsi-monConfig:comment The comment element that is the first child
of the configuration element in the message
log file.

[None]

entry This element contains a reference to an
instance of a type of entry that was analyzed.

Note: The valid values for the type attribute
are:
requestMessage
responseMessage
anyMessage
definitions
import
types
message
portType
binding
port
bindingTemplate
tModel

• type
The type of entry for the test
assertion.

• referenceID
This attribute is optional. When it
is specified, it includes a unique
identifier for an instance of the
type of entry (an example would
be an identifier for a specific entry
in a message log file).

wsi-log:messageEntry This element contains a reference to the log
entry which was the target of a test assertion.

[None]

assertionResult This element contains the result for a single
execution of a test assertion for an entry.

Note: The values for the result attribute
have the following meaning:
passed
The test assertion completed its check
without detecting any errors.
failed
The test assertion detected an error. A
description of the error appears into the
<failureMessage> sub-element.
warning
The test assertion failed, but the type
attribute for the test assertion indicated that it
was “recommended”, not “required”.
notApplicable
The test assertion was not processed because
it did not match the qualification criteria or a
prerequisite test assertion failed.
notTestable
The test assertion was not processed because
missing parameters did not allow the testing
of the assertion.

• id
Test assertion identifier. This
value matches the value that is
listed in the profile definition
document.

• result
This attribute contains the result
from the execution of the test
assertion.

additionalEntry This element contains a reference to entries
in addition to the primary entry defined
within the <entry> element which were
needed to process a test assertion.

Note: The values for the type attribute have
the same meaning as those for the <entry>
element.

• type
The type of entry for the test
assertion.

• referenceID
This attribute is optional. When it
is specified, it contains an unique
identifier for an instance of the
type of entry (an example would

© Copyright 2002 by the Web Services-Interoperability Organization. All rights reserved. Page 39 of 44

be an identifier for an entry in a
log file).

assertionDescription The assertion description for the test
assertion.

• xml:lang
The language associated with the
description.

failureMessage The failure message that is defined for the
test assertion.

• xml:lang
The language associated with the
message.

failureDetail An optional failure detail message which is
specific to the implementation of the
analyzer tool. As an example, this element
may contain a failure detail message (or set
of messages) from an implementation
specific XML parser.

• xml:lang
The language associated with the
message.

• referenceType
The type of entity that caused all
or part of the test assertion
failure. This attribute is optional.

• referenceID
The identifier for the entity that
caused all or part of the failure.
This attribute is optional.

summary This element is the container for the
conformance report summary.

Note: The values for the result attribute
have the following meaning:
passed
The result attribute will contain a value of
“passed” only if all of the processed test
assertions were successful. The result value
will be “passed” even when some test
assertions are not processed because the
input options indicated that they should be
ignored.
failed
If at least one individual execution of a test
assertion failed, then this attribute will have
a value of “failed”.

• result
The value for this attribute is
either “passed” or “failed”.

analyzerFailure When an failure occurs that causes the
analyzer tool to terminate before it has
processed all of the test assertions, this
element is used to indicate the source of the
error. This element contains at least one
<failureDetail> elements as a sub-element.
The < failureDetail > element indicates the
source of the error, and contain instructions
on how to correct the error.

[None]

© Copyright 2002 by the Web Services-Interoperability Organization. All rights reserved. Page 40 of 44

4.5.2 Conformance Report In HTML Format
The following samples are extracted from a sample conformance report after HTML
rendering, as produced by the XSL transform.

The general result of the analysis is provided at the beginning of the report (Figure 9):

Summary

Result failed

Figure 9 – Summary line of of a conformance report.

The above example illustrate an overall summary result of a conformance test. The possible
values are:

• Passed: The result of processing the set of test assertions enabled in the Analyzer (see
the Test Assertion Document) was positive. This means that each entry (of any of the
three artifact types) passed all the relevant test assertions. Another way to state this,
is: for each test assertion that was enabled in the Analyzer, all the relevant or
applicable artifact entries did pass, or generated at most a warning.

• Failed: The result of processing the set of test assertions enabled in the Analyzer (see
the Test Assertion Document) was negative. This means at least one entry failed one
of the test assertions.

(see the previous section)

Links to each sub-section of the report are then provided in an artifact index (Figure 10):

Artifacts
• discovery
• description
• message

Figure 10 – General Artifact Index.

The above is an index on each of the three sections of the report that relate to each of the artifact
types. In case no entry has been provided for an artifact, the referred section will be empty. The
following message will appear instead:
This artifact was not processed by the analyzer

Artifact: message

© Copyright 2002 by the Web Services-Interoperability Organization. All rights reserved. Page 41 of 44

Artifact Reference:

Timestamp

2003-03-06T22:24:51.687Z

Assertion Result Summary:
Assertion ID Passed Failed Warning Not Applicable Not Testable

WSI1001 7 1 8 2

WSI1002 16 2 0 0

WSI1004 8 1 0 0

WSI1201 11 1 0 6

WSI1202 8 1 0 9

WSI1203 1 1 0 16

WSI1302 1 0 1 7

WSI1305 1 1 0 7

WSI1306 2 0 0 16

WSI1307 7 1 0 10

WSI1308 7 1 0 10

WSI1309 8 0 0 10

WSI1316 2 0 0 16

WSI1318 7 1 0 10

WSI1601 12 1 0 5

WSI1701 8 4 0 6

Figure 11 – Test Assertion Summary Report.

The example in Figure 11 shows a test assertion summary for the “message” artifact. For each of
the test assertions that was enabled, there is a line in the summary. Each column shows one
possible outcome of the test assertion, and the number of message entries that generated such
outcome (an entry can only generate one outcome). See the previous section for the exact
meaning of each outcome. There is a color code for the test assertions:

• Green: At least one entry has passed the test assertion (column “Passed”), and no entry
generated failures or warnings. Such a test assertion can be considered verified on the set
of artifacts in input of the analyzer. (note there may be nonApplicable entries)

• Orange: Although no failure was generated, at least one entry generated a warning
(column “Warning”). This indicates that a recommended profile feature was not observed
on the entry.

© Copyright 2002 by the Web Services-Interoperability Organization. All rights reserved. Page 42 of 44

• Red: At least one entry failed the test assertion (column “Failed”). This means a profile
violation, regardless of how well other entries fared for this test assertion.

• Blue: All entries of the type of artifact targeted by this test assertion, were not qualified
(column “not Applicable”), i.e. not individually relevant to this assertion. It means that
the set of entries provided as input were not appropriate to test this profile feature. Unless
it is clear that the Web Service under test will never exercise such a feature, a more
comprehensive set of entries should be provided.

The test assertion summary table is followed by an index of all entries that have been verified.

The artifact section of the report then contains the details of these entries, what were the test
assertions applied to them, and the detailed outcome. The following example in Figure 12 shows
one such message entry, and the results for three test assertions:

Entry: 1

Reference ID Type

1 requestMessage

Message Entry:
Conversation
ID

2

Sender Host
and Port

127.0.0.1:1806

Receiver Host
and Port

localhost:6080

HTTP
Headers

POST /LoggingFacility/services/LoggingFacility HTTP/1.0
Content-Type: text/xml; charset=utf-8
Accept: application/soap+xml, application/dime,
multipart/related, text/*
User-Agent: Axis/1.0
Host: localhost:6080
Cache-Control: no-cache
Pragma: no-cache
SOAPAction: ""
Content-Length: 632

Message

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <logEventRequestElement xmlns="http://www.ws-
i.org/SampleApplications/SupplyChainManagement/2002-
08/LoggingFacility.xsd">

© Copyright 2002 by the Web Services-Interoperability Organization. All rights reserved. Page 43 of 44

 <DemoUserID>AUser-1-4</DemoUserID>
 <ServiceID>Retailer.submitOrder</ERROR>
 <EventID>UC1-5</EventID>
 <EventDescription>Order placed by ABCD999999999EFG for
605008, 605004, 605003</EventDescription>
 </logEventRequestElement>
 </soapenv:Body>
</soapenv:Envelope>

Assertion: WSI1004
Result passed

Assertion: WSI1601
Result failed

Failure Message The soap:Envelope or soap:Body does not conform to XML 1.0.

Failure Detail
Message

The element type "ServiceID" must be terminated by the
matching end-tag "</ServiceID>".

Assertion: WSI1201
Result notApplicable

Failure Detail
Message

The following prerequisite test assertions failed:
WSI1601.

Figure 12 – Part of a Report : Detail of an Entry Analysis.

The message entry is number 1 in the log file (Reference ID), and is of type “requestMessage”.
Details of the entry are provided, as they appear in the log file. A list of test assertion reports is
then provided for this entry. In case of failure, the cause of failure is reported. If the user wants to
have more details on the test assertion that was exercised (e.g. WSI1601), then s/he will access
the Test Assertion Document, which provides the details for each test assertion (both the XML
and HTML versions are available in the tool package).

Acknowledgements
For the Java version of the tools:

This product includes software developed by the Apache Software Foundation
(http://www.apache.org/); (c) 1999 The Apache Software Foundation. All rights reserved. THE
APACHE SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

© Copyright 2002 by the Web Services-Interoperability Organization. All rights reserved. Page 44 of 44

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THE APACHE SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

